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Linear Thermoelastic
Higher-Order Theory for Periodic
Multiphase Materials
A new micromechanics model is presented which is capable of accurately estimating
the effective elastic constants of a periodic multiphase composite and the local stres
strain fields in the individual phases. The model is presently limited to materials cha
terized by constituent phases that are continuous in one direction, but arbitrarily dis
uted within the repeating unit cell which characterizes the material’s periodic microst
ture. The model’s analytical framework is based on the homogenization techniqu
periodic media, but the method of solution for the local displacement and stress
borrows concepts previously employed by the authors in constructing the higher-
theory for functionally graded materials, in contrast with the standard finite elem
solution method typically used in conjunction with the homogenization technique.
present approach produces a closed-form macroscopic constitutive equation for a
odic multiphase material valid for both uniaxial and multiaxial loading which, in tu
can be incorporated into a structural analysis computer code. The model’s predi
accuracy is demonstrated by comparison with reported results of detailed finite ele
analyses of periodic composites as well as with the classical elasticity solution fo
inclusion in an infinite matrix. @DOI: 10.1115/1.1381005#
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1 Introduction
Micromechanical modeling of multiphase materials continu

to be an important area in both the mechanics and materials c
munities due to the need for the development of new materials
use in wide range of modern applications. These include a
space, aircraft, biomedical, electronic, and recreational indu
applications. Many advanced applications require the use of e
neered material microstructures which necessarily involve the
of multiphase material concepts. Micromechanical modeling te
niques offer an efficient approach to developing an understan
of how different microstructural details affect the average a
local responses of multiphase materials. Thus they can be
ployed by both the mechanics and materials communities as
sign and diagnostic tools in developing and analyzing differ
microstructural concepts for a given application. The fact that n
approaches are continuously being proposed attests to the im
tance of this area of research.

A large body of literature exists which deals with the microm
chanical modeling techniques for heterogeneous materials de
oped during the past several decades, and thus a comprehe
review of these techniques is beyond the scope of this art
These include use of simple Voigt and Reuss hypotheses,
consistent schemes and their generalizations, differential sche
concentric cylinder models, bounding techniques, and appr
mate or numerical analyses of periodic arrays of inclusions
fibers in the surrounding matrix phase. The various approac
may be divided into three broad categories: those based on
direct calculation of Hill’s stress or strain concentration matric
Hill @1#, and those based on the concepts of a representative
ume element~RVE! and a repeating unit cell~RUC!. A major
difference between the latter two categories lies in the bound
conditions applied to a material subvolume considered to re

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
21, 2000; final revision, February 12, 2001. Editor: L. T. Wheeler. Discussion on
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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sent the average response of the entire composite. RVE-b
models employ homogeneous displacement or traction boun
conditions, whereas symmetry or periodic boundary conditio
are employed in RUC-based models. Typically, RVE-based
proaches employ simplified geometric representations of the
tire composite for which analytical solutions under homogene
displacement or traction boundary conditions are readily av
able. RUC-based approaches, on the other hand, model the a
microstructure of a material’s subvolume which is assumed
repeat itself, and therefore often~but not always, cf., Walker et al
@2#! rely on numerical solutions of the governing field equatio
using finite difference, finite element, or boundary element me
ods. Symmetry boundary conditions are typically employed
those situations where the RUC possesses planes of material
metry which are not altered under loading. Periodic boundary c
ditions must be applied to the RUC in the absence of plane
material symmetry or symmetry-preserving loading. These dif
ent boundary conditions ensure that the deformation of an R
with a specific microstructure remains compatible with the def
mation of its neighbors. The use of periodic boundary conditio
in conjunction with a multiscale asymptotic expansion of the d
placement and stress fields in the RUC forms the basis of
so-called homogenization methods for estimating the effec
properties of periodic materials. Reviews and comparisons of
different approaches have been provided by Christensen@3#,
Aboudi @4#, Hollister and Kikuchi@5#, Nemat-Nasser and Hori
@6#, Parton and Kudryavtsev@7#, Arnold et al. @8#, and
Kalamkarov and Kolpakov@9#, among others.

In the case of periodic multiphase materials characterized b
arbitrary distribution of different phases within the RUC, the h
mogenization theory~cf. references@7# and@9# for comprehensive
reviews of the theory! is an effective tool for determining the
material’s effective moduli as it provides the correct period
boundary conditions that must be applied to the RUC under lo
ing along different directions, thereby avoiding ad hoc assum
tions on the deformation of the RUC’s bounding surface. This
turn, allows the determination of all the effective moduli for a
plications involving multiaxial loading in a rational manner. How
ever, with the exception of simple RUC architectures amenabl
analytical solutions, the evaluation of the effective moduli is p

st
the
t of
ill
E
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formed by conducting a numerical analysis of the RUC, typica
based on the finite element approach. For example, the homo
zation technique has been employed in conjunction with the fi
element procedure by Banks-Sills et al.@10# to analyze compos-
ites in which the repeating unit cell has no planes of mate
symmetry.

Herein, a new analytical model for the determination of t
effective moduli of periodic multiphase materials, characteriz
by constituent phases continuous along one direction, is prese
that circumvents the use of a finite element solution for the d
placement and stress fields within an RUC. The model’s analyt
framework is based on the homogenization technique, but
method of solution for the local displacement and stress fie
within an RUC borrows concepts previously employed by
authors in constructing the higher-order theory for functiona
graded materials,~Aboudi et al.@11#!. It is shown that the mode
is capable of accurately estimating both the effective ela
moduli of periodic composites and the local stress and strain fi
in the individual constituents. The fully analytical nature results
closed-form expressions for all the effective moduli of a perio
multiphase material under multiaxial loading which, in turn, c
be incorporated into a finite element analysis of a structural c
ponent. Incorporation of the model into a structural analysis c
is further facilitated by the ease of an RUC’s construction. P
odic multiphase materials with arbitrary phase distributions in
plane normal to the direction of continuous reinforcement can
accommodated, whose response in this plane is fully anisotro

2 Theoretical Framework
The homogenization approach is employed herein to const

the displacement field approximation at the local microstructu
level of a multiphase periodic material in a consistent fashion,
to derive the governing field equations and the boundary co
tions that the displacement field must satisfy. The elements of
homogenization technique employed in constructing our the
are outlined first in Section 2.1. Section 2.2 defines the st
concentration tensor employed in the calculation of the effec
stiffness tensor of a multiphase periodic material discussed in
tion 2.3. The method of determining the displacement, and t
strain and stress, fields within the repeating unit cell is descri
in Section 2.4. Section 2.5 outlines how the local strain conc
tration tensors are obtained once the displacement field within
repeating unit cell is known, and how these tensors are use
construct the macroscopic constitutive equation for the given
cell in terms of the effective elastic stiffness tensor.

2.1 Elements of the Homogenization Theory. Consider a
multiphase composite wherein the microstructure is periodic
distributed in the planex22x3 defined by the global coordinate
(x2 ,x3); see Fig. 1 where the repeating unit cell used to const
the periodic array is highlighted. In the framework of the homo
enization method the displacements are asymptotically expan
as follows:

ui~x,y!5u0i~x,y!1du1i~x,y!1d2u2i~x,y!1 . . . (1)

where x5(x1 ,x2 ,x3) are the macroscopic~global! coordinates,
and y5(y1 ,y2 ,y3) are the microscopic~local! coordinates that
are defined with respect to the repeating unit cell. The size of
unit cell is further assumed to be much smaller than the size of
body so that the relation between the global and local system

yi5
xi

d
(2)

whered is a small scaling parameter characterizing the size of
unit cell. This implies that a movement of order unity on the loc
scale corresponds to a very small movement on the global sc

The material’s periodicity imposes the following constraint
the different-order termsua i (a51,2, . . . ) in Eq.~1!:
698 Õ Vol. 68, SEPTEMBER 2001
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ua i~x,y!5ua i~x,y1d! (3)

whered is the local length scale characterizing the material’s
riodicity.

The displacementu0i is the average value ofui and hence it is
not a function ofyi . Indeed, it can be formally shown thatu0i is
a function ofxi only by employing the equilibrium equations i
conjunction with the Hooke’s law~cf. Kalamkarov and Kolpakov
@9#!.

Let

u0i5u0i~x![ū (4)

and

u1i[ũi~x,y! (5)

where the first-order terms are the fluctuating displaceme
which are unknown periodic functions. These displacements a
due to the heterogeneity of the medium.

Due to the change of coordinates from the global to the lo
systems the following relation must be employed in evaluating
derivative of a field quantity:

]

]xi
→ ]

]xi
1

1

d

]

]yi
. (6)

Therefore, upon employing Eq.~6!, the strain components ar
determined from the displacement expansion~1! in the following
form:

e i j 5 ē i j ~x!1 ẽ i j ~x,y!1O~d! (7)

where

ē i j ~x!5
1

2 S ]ūi

]xj
1

]ū j

]xi
D (8)

and

ẽ i j ~x,y!5
1

2 S ]ũi

]yj
1

]ũ j

]yi
D . (9)

This shows that the strain components can be represented
sum of the average strainē i j (x) in the composite and a fluctuatin
strain ẽ i j (x,y). It can be easily shown that

1

Vy
E e i j dVy5

1

Vy
E ~ ē i j 1 ẽ i j !dVy5 ē i j

whereVy is the volume of the repeating unit cell. This follow
directly from the periodicity of the fluctuating strain, implyin
that the average of the fluctuating strain taken over the unit

Fig. 1 A multiphase composite with a periodic microstructure
in the x 2 – x 3 plane characterized by a repeating unit cell „high-
lighted …
Transactions of the ASME
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peating cell vanishes. For a homogeneous material it is obv
that the fluctuating displacements and strains vanish.

Using ~7!, one can readily represent the displacements in
form

ui~x,y!5 ē i j xj1ũi1O~d2!. (10)

This representation will be employed in constructing an appro
mate displacement field for the solution of the cell problem d
cussed in Section 2.4.

For an elastic material the stresses are related to the st
according to the Hooke’s law as follows:

s i j 5Ci jkl ekl (11)

whereCi jkl (x) are the components of the stiffness tensor of
composite’s phases. The stiffness tensor forms a periodic func
that is defined in the unit repeating cell in terms of the lo
coordinatesy such that

Ci jkl ~x!5Ci jkl ~y!. (12)

Substituting~7! into ~11! and differentiating with respect to th
microvariable coordinatesyi leads to

]

]yj
Ci jkl ~y!@ ēkl~x!1 ẽkl~x,y!#50, (13)

Let us define the following stress quantities:

s i j
0 5Ci jkl ~y!ēkl~x! (14)

s i j
1 5Ci jkl ~y!ẽkl~x,y! (15)

with the latter being the fluctuating stresses. It follows then th

]s i j
1

]yj
1

]s i j
0

]yj
50 (16)

which is the strong form of the equilibrium equations. It is read
seen that the first term in~16! involves the unknown fluctuating
periodic displacementsũi , while the second term produce
pseudo-body forces whose derivatives are actually zero ev
where except at the interfaces between the phases.

For given values of the average strainsēkl , the unknown fluc-
tuating displacements are governed by~16! subject to periodic
boundary conditions that are prescribed at the boundaries o
repeating unit cell. In addition to these boundary conditions o
needs to impose the continuity of displacements and traction
the internal interfaces between the phases that fill the repea
unit cell.

Suppose that the repeating unit cell is given in the planey2
2y3 ~with fibers oriented in the 1-direction! by a rectangle de-
fined with respect to the local coordinates by 0<y2<H, 0<y3
<L, Fig. 2~a!. Consequently, the periodic boundary conditio
are given by

ũi~y250!5ũi~y25H !

s2i~y250!5s2i~y25H ! (17)

and

ũi~y350!5ũi~y35L !

s3i~y350!5s3i~y35L ! (18)

where the total stress~which is given by~11!! is expressed as

s i j 5s i j
0 1s i j

1 . (19)

It is also necessary to fix the displacement field at a point in
repeating unit cell.

2.2 Strain Concentration Tensor. Once the solution of
~16!, subject to the internal interfacial continuity conditions a
periodic boundary conditions~17!–~18! has been established, on
can proceed to determine the strain concentration tensor as
Journal of Applied Mechanics
ous

the
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ated with the defined repeating unit cell. This tensor expresses
local strain in the cell in terms of the external average strain.
this end, let us define the fourth-order tensorÃ which relates the
fluctuating strain to the average strain

ẽ5Ã~y!ē. (20)

Using Eq.~7!, we readily obtain the required strain concentrati
tensorA(y) as follows:

e5 ē1Ã~y!ē5@ I41Ã~y!# ē[A~y!ē (21)

whereI4 is the fourth-order identity tensor:

~ I 4! i jkl 5
1

2
~d ikd j l 1d i l d jk!

with d i j being the Kronecker delta.
To obtain the strain concentration tensorA(y) a series of prob-

lems must be solved as follows. Solve Eqs.~16! in conjunction
with the internal interfacial and periodic boundary conditions w
ē1151 and all other components set to zero. The solution of~16!
readily providesAi j 11 for i , j 51,2,3. This procedure is repeate
with ē2251 and all other components set to zero, which provid
Ai j 22, and so on.

2.3 Effective Stiffness Tensor. Once the strain concentra
tion tensorA(y) has been determined, it is possible to compu
the effective stiffness tensor of the multiphase composite as
lows. Substitution ofe given by ~21! in ~11! yields

s5C~y!A~y!ē. (22)

Taking the average of both sides of Eq.~22! over the repeating
unit cell yields the average stress in the composite in terms of
average strain via the effective elastic stiffness tensorC* , namely

s̄5C* ē

Fig. 2 „a… Volume discretization of the repeating unit cell em-
ployed in the present model, „b… generic cell within the repeat-
ing unit cell
SEPTEMBER 2001, Vol. 68 Õ 699
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C* 5
1

Vy
E C~y!A~y!dV (23)

2.4 Method of Solution for the Cell Problem. In this sec-
tion we present a solution methodology of Eqs.~16! for two-
dimensional multiphase elastic composites. In this case the rep
ing unit cell extends over 0<y2<H, 0<y3<L given in terms of
the local coordinates (y2 ,y3) as stated previously. The microstru
ture in they2–y3 plane of the composite is modeled by discret
ing the cross section of the repeating unit cell intoNq and Nr
internal or generic cells in the intervals 0<y2<H and 0<y3
<L, respectively. Figure 2~a! illustrates how the repeating un
cell highlighted in Fig. 1 could be discretized. In addition, eve
generic cell consists of four subcells designated by the pair~bg!
where each index takes the values 1 or 2 which indicate the r
tive position of the given subcell along they2 andy3-axis, respec-
tively, see Fig. 2~b!. The indicesq and r, whose ranges areq
51,2, . . . ,Nq andr 51,2, . . . ,Nr , identify the generic cell in the
y2–y3 plane. The dimensions of the generic cell along they2 and
y3-axes areh1

(q) , h2
(q) and l 1

(r ) , l 2
(r ) , such that

H5(
q51

Nq

~h1
~q!1h2

~q!!, L5(
r 51

Nr

~ l 1
~r !1 l 2

~r !!.

This manner of discretizing a periodic material’s microstructu
has also been employed in constructing the ‘‘generalized me
of cells’’ ~Paley and Aboudi@12#!. The construction of the higher
order theory for functionally graded materials characterized
spatially variable microstructures without a definable repea
unit cell is also based on such volume discretization~Aboudi et al.
@11#!.

Given an applied macroscopic loading, an approximate solu
for the displacements field is constructed based on volume
averaging of the field equations together with the imposition
periodic boundary conditions, and both displacement and trac
continuity conditions, in an average sense between the cells
subcells used to characterize the material’s microstructure. Th
accomplished by approximating the fluctuating displacement
each subcell using a quadratic expansion in terms of local coo
nates (ȳ2

(b) ,ȳ3
(g)) centered at the subcell’s midpoint. A highe

order representation of the fluctuating displacement field is ne
sary in order to capture the local effects created by the fi
gradients and the microstructure of the composite. This is in sh
contrast with the generalized method of cells where the displa
ment expansion was linear as a result of which the coupling
tween the local normal and shear effects was lost.

In the current development, we include spatially uniform th
mal loading characterized by the temperature deviationDT from a
reference temperature, in addition to mechanical loading. Furt
the phases corresponding to the individual subcells are take
orthotropic. Thus the constitutive relation of the material fillin
subcell~b,g! is obtained by generalizing Eq.~11! as follows:

s i j
~bg!5Ci jkl

~bg!~ekl
~bg!2ekl

T~bg!! (24)

whereCi jkl
(bg) are the elements of the stiffness tensor of the ph

filling subcell ~bg! with nine independent constants,ekl
(bg) are the

total strains which are given by~7!, and ekl
T(bg) are the thermal

strains in these subcells, with no summation implied by repea
Greek letters in the above and henceforth. Equation~24! can be
rewritten in the form

s i j
~bg!5Ci jkl

~bg!ekl
~bg!2s i j

T~bg! (25)

where the terms i j
T(bg) , henceforth referred to as thermal stre

stands for the thermal contribution

s i j
T~bg!5G i j

~bg!DT (26)
700 Õ Vol. 68, SEPTEMBER 2001
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whereG i j
(bg) are the thermal stress coefficients.

The equilibrium Eqs.~16! in conjunction with~19! for the ma-
terial occupying the subcell~bg! in the region u ȳ2

(b)u
<hb

(q)/2, u ȳ3
(g)u< l g

(r )/2 can be written in the form

]2s2 j
~bg!1]3s3 j

~bg!50 j 51,2,3 (27)

where]25]/] ȳ2
(b) and]35]/] ȳ3

(g) .
As stated before, the fluctuating displacement field in the s

cell ~bg! of the (q,r )th cell is approximated by a second-ord
expansion in the local coordinate system. Consequently, accor
to Eq. ~10! the displacements in the subcell can be represente
the form ~omitting the cell label~q,r!!

u1
~bg!5 ē1 j xj1W1~00!

~bg! 1 ȳ2
~b!W1~10!

~bg! 1 ȳ3
~g!W1~01!

~bg!

1
1

2 S 3ȳ2
~b!22

hb
~q!2

4 DW1~20!
~bg!

1
1

2 S 3ȳ3
~g!22

l g
~r !2

4 DW1~02!
~bg! (28)

u2
~bg!5 ē2 j xj1W2~00!

~bg! 1 ȳ2
~b!W2~10!

~bg! 1 ȳ3
~g!W2~01!

~bg!

1
1

2 S 3ȳ2
~b!22

hb
~q!2

4 DW2~20!
~bg!

1
1

2 S 3ȳ3
~g!22

l g
~r !2

4 DW2~02!
~bg! (29)

u3
~bg!5 ē3 j xj1W3~00!

~bg! 1 ȳ2
~b!W3~10!

~bg! 1 ȳ3
~g!W3~01!

~bg!

1
1

2 S 3ȳ2
~b!22

hb
~q!2

4 DW3~20!
~bg!

1
1

2 S 3ȳ3
~g!22

l g
~r !2

4 DW3~02!
~bg! (30)

where Wi (00)
(bg) , which are the volume-averaged fluctuating d

placements and the higher-order termsWi (mn)
(bg) ( i 51,2,3) must be

determined, as shown below, from the equilibrium Eqs.~27! as
well as the periodic boundary conditions~17!–~18! that the fluc-
tuating displacements must fulfill, as well as the interfacial con
nuity conditions between subcells. The number of unknowns
describe the fluctuating displacements in the cell~q,r! is 60.

The total strains in the subcell~bg! are given by~7! in conjunc-
tion with ~8! and ~9!, namely

e i j
~bg!5 ē i j 1

1

2
~] iuj

~bg!1] jui
~bg!! (31)

where]150 and]2 ,]3 have been defined previously. Therefor
the volume-averaged strainsē i j (m,n)

(bg) in the subcell~bg! of the cell
~q,r! are obtained in terms of the displacement field~28!–~30! as
follows ~omitting ~q,r!!:

ē11
~bg!5 ē11

ē22
~bg!5 ē221W2~10!

~bg!

ē33
~bg!5 ē331W3~01!

~bg!

ē23
~bg!5 ē231

1

2
~W2~01!

~bg! 1W3~10!
~bg! !

ē13
~bg!5 ē131

1

2
W1~01!

~bg!

ē12
~bg!5 ē121

1

2
W1~10!

~bg! . (32)
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In the course of satisfying the equilibrium equations in a vo
metric sense, it is convenient to define the following stress qu
tities:

@Si j ~m,n!
~bg! #~q,r !

5
1

hb
~q!l g

~r ! E
2hb

~q!/2

hb
~q!/2 E

2 l g
~r !/2

l g
~r !/2

~ ȳ2
~b!!m~ ȳ3

~g!!ns i j
~bg!dȳ2

~b!dȳ3
~g! .

(33)

For m5n50, Eq. ~33! provides the average stresses in the s
cell, whereas for other values of~m, n! higher-order stresses ar
obtained that are needed to describe the governing field equa
of the continuum. These stress quantities can be evaluated ex
itly in terms of the unknown coefficientsWi (mn)

(bg) by performing the
required volume integration upon substituting Eqs.~25!, ~31!, and
~28!–~30! in Eq. ~33!. This yields the following nonvanishing
zeroth-order and first-order stress-components in terms of the
known coefficients in the displacement field expansion~omitting
~q,r!!:

S11~0,0!
~bg! 5C11

~bg!ē111C12
~bg!~W2~10!

~bg! 1 ē22!1C13
~bg!~W3~01!

~bg! 1 ē33!

2G1
~bg!DT (34)

S11~1,0!
~bg! 5

1

4
hb

~q!2C12
~bg!W2~20!

~bg! (35)

S11~0,1!
~bg! 5

1

4
l g
~r !2C13

~bg!W3~02!
~bg! (36)

with similar expressions for the other normal stress compone
and

S23~0,0!
~bg! 5C44

~bg!~2ē231W2~01!
~bg! 1W3~10!

~bg! ! (37)

S23~1,0!
~bg! 5

1

4
hb

~q!2C44
~bg!W3~20!

~bg! (38)

S23~0,1!
~bg! 5

1

4
l g
~r !2C44

~bg!W2~02!
~bg! (39)

S13~0,0!
~bg! 5C55

~bg!~2ē131W1~01!
~bg! ! (40)

S13~0,1!
~bg! 5

1

4
l g
~r !2C55

~bg!W1~02!
~bg! ) (41)

S12~0,0!
~bg! 5C66

~bg!~2ē121W1~10!
~bg! ! (42)

S12~1,0!
~bg! 5

1

4
hb

~q!2C66
~bg!W1~20!

~bg! ) (43)

where contracted notation has been employed for the stiffn
elementsCi jkl

(bg) .
Subsequently, satisfaction of the zeroth, first, and second

ments of the equilibrium Eqs.~27! results in the following 12
relations among the volume-averaged first-order stressesSi j (m,n)

(bg)

in the different subcells~bg! of the ~q,r! cell, after lengthy alge-
braic manipulations

@S2 j ~1,0!
~bg! /hb

21S3 j ~0,1!
~bg! / l g

2#~q,r !50 j 51,2,3. (44)

The continuity of tractions at the subcell interfaces and betw
adjacent cells, imposed in an average sense, can be shown
ensured by the following relations:

@212S2 j ~1,0!
~1g! /h11S2 j ~0,0!

~2g! 26S2 j ~1,0!
~2g! /h2#~q,r !

2@S2 j ~0,0!
~2g! 16S2 j ~1,0!

~2g! /h2#~q21,r !50 (45)
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F2S2 j ~0,0!
~1g! 1

1

2
S2 j ~0,0!

~2g! 23S2 j ~1,0!
~2g! /h2G ~q,r !

1
1

2
@S2 j ~0,0!

~2g! 16S2 j ~1,0!
~2g! /h2#~q21,r !50 (46)

@212S3 j ~0,1!
~b1! / l 11S3 j ~0,0!

~b1! 26S3 j ~0,1!
~b2! / l 2#~q,r !

2@S3 j ~0,0!
~b2! 16S3 j ~0,1!

~b2! / l 2#~q,r 21!50 (47)

F2S3 j ~0,0!
~b1! 1

1

2
S3 j ~0,0!

~b2! 23S3 j ~0,1!
~b2! / l 2G ~q,r !

1
1

2
@S3 j ~0,0!

~b2! 16S3 j ~0,1!
~b2! / l 2#~q,r 21!50 (48)

where j 51, 2, and 3. The details of derivation of equations sim
lar to Eqs.~44!–~48! have been provided by Aboudi et al.@13# for
a more general case of a microstructure containing periodic in
sions in the out-of-plane direction.

Equations~45!–~48! provide 24 additional relations among th
zeroth-order and first-order stresses. These relations together
Eq. ~44!, can be expressed in terms of the unknown coefficie
Wi (mn)

(bg) by making use of Eqs.~34!–~43!, providing a total of 36 of
the required 60 equations necessary for the determination of t
coefficients in the cell~q, r!.

The additional 24 relations necessary to determine the unkn
coefficients in the displacement field expansion are subseque
obtained by imposing displacement continuity conditions on
average basis at each subcell and cell interface. This produce

FWj ~00!
~1g! 1

1

2
h1Wj ~10!

~1g! 1
1

4
h1

2 Wj ~20!
~1g! G ~q,r !

5FWj ~00!
~2g! 2

1

2
h2Wj ~10!

~2g! 1
1

4
h2

2Wj ~20!
~2g! G ~q,r !

(49)

FWj ~00!
~2g! 1

1

2
h2Wj ~10!

~2g! 1
1

4
h2

2Wj ~20!
~2g! G ~q,r !

5FWj ~00!
~1g! 2

1

2
h1Wj ~10!

~1g! 1
1

4
h1

2Wj ~20!
~1g! G ~q11,r !

(50)

FWj ~00!
~b1! 1

1

2
l 1Wj ~01!

~b1! 1
1

4
l 1
2 Wj ~02!

~b1! G ~q,r !

5FWj ~00!
~b2! 2

1

2
l 2Wj ~01!

~b2! 1
1

4
l 2
2Wj ~02!

~b2! G ~q,r !

(51)

FWj ~00!
~b2! 1

1

2
l 2Wj ~01!

~b2! 1
1

4
l 2
2Wj ~02!

~b2! G ~q,r !

5FWj ~00!
~b1! 2

1

2
l 1Wj ~01!

~b1! 1
1

4
l 1
2Wj ~02!

~b1! G ~q,r 11!

(52)

where j 51, 2, and 3, which comprise the required additional
relation.

The equilibrium relations, Eqs.~44!, together with the traction
and displacement continuity conditions Eqs.~45!–~48! and ~49!–
~52!, respectively, form 60 equations in the 60 unknownsWi (mn)

(bg)

which govern the equilibrium of a subcell~bg! within an interior
cell ~q,r!; q52, . . . ,Nq21, r 52, . . . ,Nr21. For the boundary
cells q51,Nq and r 51,Nr a different treatment must be applied

For cell~1,r!, the above relations are operative, except Eqs.~45!
and~46!, which follow from the continuity of tractions between
given cell and the preceding one. These 12 equations mus
replaced by the conditions of continuity of tractions at the inter
interfaces of the cell~1,r! ~imposed in the average sense!, and by
SEPTEMBER 2001, Vol. 68 Õ 701
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the conditions that the fluctuating displacements are periodic
follows, by imposing the first relations in~17! on an average
basis, that

FWj ~0,0!
~1g! 2

1

2
h1Wj ~10!

~1g! 1
1

4
h1

2Wj ~20!
~1g! G ~1,r !

5FWj ~00!
~2g! 1

1

2
h2Wj ~10!

~2g! 1
1

4
h2

2Wj ~20!
~2g! G ~Nq ,r !

(53)

where j 51, 2, and 3. Both conditions provide the required
relations to be used for cell~1,r!.

For cell (Nq ,r ), the previously derived governing equations a
operative except for the six relations given by Eqs.~50!, which are
obviously not applicable. These are replaced by the conditi
that the tractions are periodic. Thus the second relations in~17!,
imposed on an average basis, provide the six equations to be
for cell (Nq ,r ) as follows:

@s2 j
~1g!u ȳ

2
~1!52h1/2#

~1,r !5@s2 j
~2g!u ȳ

2
~2!5h2/2#

~Nq ,r ! (54)

where the stressess i j
(bg) are given by Eq.~25!.

Similar treatments hold for boundary cells~q,1! and (q,Nr).
Thus the 12 equations~47!–~48! are obviously not applicable in
cell ~q, 1! and should be replaced by the conditions of continu
of tractions at the interior interfaces of this cell~imposed in the
average sense!, and by the conditions that the fluctuating displac
ments are periodic. The latter yield according to the first equa
in ~18!,

FWj ~00!
~b1! 2

1

2
l 1Wj ~01!

~b1! 1
1

4
l 1
2Wj ~02!

~b1! G ~q,1!

5FWj ~00!
~b2! 1

1

2
l 2Wj ~01!

~b2! 1
1

4
l 2
2Wj ~02!

~b2! G ~q,Nr !

. (55)

For boundary cell (q,Nr), Eqs. ~52! are not operative and the
should be replaced by the periodicity of tractions which is giv
by the second relation in~18! that is imposed on the average bas

@s3 j
~b1!u ȳ

3
~1!52 l 1/2#

~q,1!5@s3 j
~b2!u ȳ

3
~2!5 l 2/2#

~q,Nr !. (56)

Consequently, the governing equations for the interior a
boundary cells form a system of 60NqNr algebraic equations in
the unknown coefficientsWi (mn)

(bg) . The final form of this system of
equations can be symbolically represented by

KU5f (57)

where the structural stiffness matrixK contains information on the
geometry and thermomechanical properties of the materials w
the individual subcells~bg! of the cells comprising the multiphas
periodic composite. The displacement vectorU contains the un-
known displacement coefficients in each subcell, i.e.,

U5@U11
~11! , . . . ,UNqNr

~22! # (58)

where in subcell~bg! of cell ~q, r! these coefficients are

Uqr
~bg!5@Wi ~00! ,Wi ~10! ,Wi ~01! ,Wi ~20! ,Wi ~02!#qr

~bg! i 51,2,3.

The mechanical forcef contains information on the applied ave
age strainsē i j and the imposed temperature deviationDT.

A careful check of the preceding equations reveals that
equations that govern the normal and in-plane~2–3! shear defor-
mations are coupled, thus providing the necessary shear cou
effects. On the other hand, these equations are not coupled t
axial shear deformations~1–2 and 1–3!. Thus the above system
Eq. ~57!, can be decoupled in practical applications and solved
the normal and transverse shear deformations~with 40NqNr alge-
braic equations! separately from the axial shear deformatio
~with 20NqNr algebraic equations!.
702 Õ Vol. 68, SEPTEMBER 2001
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2.5 Global Constitutive Relations. Once the solutionU for
a given set of average strainsē has been established, we ca
determine, in particular, the average strains@ ē(bg)# (q,r ) in subcell
~bg! of the cell ~q,r! given by ~32!.

The average stress components@Si j (0,0)
(bg) # (q,r ) in subcell~bg! of

the cell~q,r! are given by Eqs.~33!, ~36!, ~39!, and~41!. They can
be assembled in a compact form as follows:

@S~0,0!
~bg!#~q,r !5@C~bg!ē~bg!2G~bg!DT#~q,r !. (59)

Let us generalize the localization Eq.~21! ~that was given in the
elastic case! to the present situation which involves thermoelas
effects and write it in the form

@ ē~bg!#~q,r !5@A~bg!ē1D~bg!#~q,r ! (60)

where@A(bg)# (q,r ) is the mechanical strain concentration matrix
the subcell~bg!, and@D(bg)# (q,r ) is a vector that involves therma
effects in the subcell. In the absence of thermal effects this ve
vanishes, and we can readily determine from~60! the mechanical
strain concentration matrix@A(bg)# (q,r ) by solving the system~57!
six consecutive times upon imposing a single nonzero compo
of ē one at a time.

The thermal analysis is performed by imposing a spatially u
form temperatureDT. Thus for a given value of applied therma
load, the average strains@ ē(bg)# (q,r ) in the subcell are also ob
tained from the solution of Eq.~57!, and hence the matrix
@D(bg)# (q,r ) from ~60! in the absence ofē.

Substitution of~60! into ~59! yields

@S~0,0!
~bg!#~q,r !5@C~bg!~A~bg!ē1D~bg!!2G~bg!DT#~q,r !. (61)

The average stress in the multiphase periodic composite is
termined from

s̄5
1

HL (
q51

Nq

(
r 51

Nr

(
b,g51

2

hb
~q!l g

~r !@S~0,0!
~bg!#~q,r !. (62)

Consequently, Eqs.~61!–~62! establish the effective constitu
tive law of the multiphase thermoelastic composite in the form

s̄5C* ē2s̄T (63)

whereC* is the effective elastic stiffness matrix of the compos
which is given by~see also Eq.~23!!

C* 5
1

HL (
q51

Nq

(
r 51

Nr

(
b,g51

2

hb
~q!l g

~r !@C~bg!A~bg!#~q,r ! (64)

and s̄T denote the overall~macroscopic! thermal stresses in the
composite given by

s̄T5
21

HL (
q51

Nq

(
r 51

Nr

(
b,g51

2

hb
~q!l g

~r !@C~bg!D~bg!2G~bg!DT#~q,r !.

(65)

Alternatively, the results independently obtained by Levin@14#
and Schapery@15# can be employed to express the global therm
stress in terms of the mechanical strain concentration matrice
the individual subcells. The global thermal stress in the mu
phase composites̄T5G* DT ~G* is related to the effective coef
ficients of thermal expansiona* of the composite byG*
5C* a* ! is given in accordance with the Levin-Schapery formu
in terms of the mechanical strain concentration matrices and
thermal stress vector in the individual phases by

s̄T5
DT

HL (
q51

Nq

(
r 51

Nr

(
b,g51

2

hb
~q!l g

~r !@Atr ~bg!G~bg!#~q,r ! (66)
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Table 1 Elastic moduli of constituent fiber and matrix materials

Material E11 ~GPa! E22 ~GPa! G12 ~GPa! n12 n23 a11 (1026/C) a22 (1026/C)

Boron fiber 379.3 379.3 172.41 0.10 0.10 8.1 8.1
Aluminum matrix 68.3 68.3 26.3 0.30 0.30 23.0 23.0
Graphite fiber 235.0 14.0 28.0 0.20 0.25 - -
Epoxy matrix 4.8 4.8 1.8 0.34 0.34 - -
Glass fiber 69.0 69.0 28.75 0.20 0.20 - -
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where@Atr (bg)# (q,r ) is the transpose of the mechanical strain co
centration matrix@A(bg)# (q,r ) of subcell ~bg! within cell ~q,r!.
This provides an additional check on the consistency of the p
posed approach.

3 Numerical Results and Discussion
To illustrate the predictive capability of the developed theo

we first compare the predictions for the effective moduli of u
directional continuous fiber-reinforced composites with the fin
element results reported by Sun and Vaidya@16# and Tamma and
Avila @17#. Symmetry and periodic boundary conditions were i
posed on the deformation of the repeating unit cell in these inv
tigations depending on the direction of the applied load. The
sults have been generated for two material systems w
substantially different fiber/matrix elastic moduli mismatch. The
materials systems are boron/aluminum and graphite/epoxy. T
1 gives the elastic moduli of the constituent phases for these
unidirectional composites. The fiber volume fractions of t
boron/aluminum and graphite/epoxy composites are 0.47
0.60, respectively. Figure 3 shows the volume discretization of
repeating unit cell used in the analysis of the boron/alumin
system. It contains 26326 subcells appropriately dimensioned
approximate the circular fiber shape sufficiently well. This c
generates a square array of circular fibers in the matrix phase.

Fig. 3 Volume discretization of the repeating unit cell em-
ployed in the analysis of a boron Õaluminum unidirectional com-
posite with a fiber volume fraction of 0.47
ied Mechanics
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repeating unit cell for the graphite/epoxy system~not shown! is
similar to that shown in Fig. 3 with the only difference being th
dimensions of the subcells in the matrix phase to account for
higher volume fraction.

Tables 2, 3, and 4 present comparison between the effec
moduli and thermal expansion coefficients predicted by
present theory and the finite-element results for the bor
aluminum and graphite/epoxy systems obtained from the ab
two references. Included in the tables are the predictions of
generalized method of cells obtained using the same repea
unit cell geometry as shown in Fig. 3. In the case of the bor
aluminum system, Table 2, very good agreement is observed
tween the present theory’s predictions for the effective ela
moduli and the results reported by Sun and Vaidya with the
ception of the shear modulusG12 and the Poisson’s ration23
which are somewhat larger. However, the values for these mo
reported by Tamma and Avila are very close to those predicted
the present theory. The generalized method of cells’ predicti
are generally lower~with the exception of the two Poisson’s ra
tios! than the present theory’s predictions, although the differen
are quite acceptable. As will be discussed in the sequel, the
eralized method of cells’ estimate of the subcell stresses is no
accurate as the effective moduli estimates due to the absenc
coupling between the normal and shear stresses in the planx2
2x3 . The effective thermal expansion coefficients obtained fr
the present theory, Table 3, also agree quite well with the res
reported by Tamma and Avila. It is remarkable that the gene
ized method of cell’s estimates of the effective thermal expans
coefficients are even closer to the finite element results.

The agreement between the present theory’s estimates o
effective moduli and the finite element results of Sun and Vaid
in the case of the graphite/epoxy system, Table 4, is even b
that in the preceding case for all moduli. In addition to the high
fiber volume fraction for this case relative to the preceding ca
the material property mismatch in thex2–x3 plane is lower, which
could explain the better agreement. However, the shear mod
mismatch in the out-of-plane direction~noting that the graphite
fiber is transversely isotropic! is now higher. Despite this greate
mismatch, the estimates ofG12 are very close. The prediction o
the generalized method of cells forG12 also compares favorably
with both the finite element and the present theory’s results.

Despite the established predictive capability of the generali
method of cells to accurately estimate the macroscopic resp
of unidirectional composites in terms of both the effective mod
and the thermal expansion coefficients, demonstrated above a
a number of previous investigations~see the recent review pape
by Aboudi@18# for instance, which also includes inelastic effect!,
its predictive capability of the local subcell stresses is not as go
As mentioned previously, this is due to the absence of coup
55
Table 2 Comparison of predicted effective elastic moduli of a boron Õaluminum unidirectional
composite „v fÄ0.47…

Effective Elastic Moduli E11 ~GPa! E22 ~GPa! G12 ~GPa! G23 ~GPa! n12 n23

Present model 215.4 144.0 54.34 45.83 0.195 0.2
Sun and Vaidya@16# 215.0 144.0 57.20 45.90 0.190 0.290
Tamma and Avila@17# 214.7 144.7 54.30 45.60 0.195 0.249
Generalized method of cells@12# 215.0 141.0 51.20 43.70 0.197 0.261
SEPTEMBER 2001, Vol. 68 Õ 703
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between the normal and shear strains~or stresses! in the x2–x3
plane which, in turn, can be directly traced to the first-order
pansion of the displacement field within each subcell and the m
ner in which the interfacial traction continuity conditions are a
plied in an average sense. This produces piecewise uniform s
and strain fields within each subcell as a result of which the r
tions between the macroscopic normal~inplane shear! strains, rep-
resented by the strain concentration matrix, are related to the
erage subcell normal~inplane shear! strains only. As demonstrate
next, this problem has been circumvented in the present the
and in fact was the motivating factor that led to the theor
development.

To demonstrate the proposed theory’s accuracy in estima
the local subcell stress fields, we consider the classical proble
an isotropic circular fiber embedded in an infinite isotropic mat
subjected to the uniform far-field stresss22

` ~the so-called Eshelby
problem!. The exact analytical solution to this problem is given
compact form in terms of two sets of complex potentialsf andc,
with each pair corresponding to the fiber and matrix phases.
stresses in thex2–x3 plane are obtained from the formulas

s2252 Ref81Re~ z̄f91c8!,

s3352 Ref82Re~ z̄f91c8!,

s235Im~ z̄f91c8! (67)

where the prime denotes the derivative with respect to the c
plex variablez5x1 iy , and Re and Im denote the real and ima
nary parts of the expressions within the parentheses, respect
For the fiber phase, the two complex potentials are given by

f f5a1z, c f5p1z (68)

and for the matrix phase they are

fm5ã21z211ã1z, cm5 p̃23z231 p̃21z211 p̃1z. (69)

Application of the interfacial displacement and traction continu
conditions, and the far-field boundary conditions gives the follo
ing expressions for the coefficients appearing in the above e
tions in the case of plane-strain loading (ē1150)

a15
1

4
s22

`
~km11!m f

@2m f1~k f21!mm#
, p15

1

2
s22

` F11
m f2mm

mm1kmm f
G

(70)

ã215
1

2
s22

` F m f2mm

mm1kmm f
G , ã15

1

4
s22

` , p̃235ã21 ,

p̃2152a12
1

2
s22

` , p̃15
1

2
s22

` (71)

Table 3 Comparison of predicted effective thermal expansion
coefficients of a boron Õaluminum unidirectional composite „v f
Ä0.47…

Effective Thermal Expansion Coefficientsa11 (1026/C) a22 (1026/C)

Present model 11.0 16.7
Tamma and Avila@17# 10.77 17.34
Generalized method of cells@12# 10.91 16.94
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where the subscriptsf andm denote fiber and matrix phases, r
spectively, and the correspondingk’s are related to the Lame’s
constantsl andm as follows:

k5
l13m

l1m
.

In the fiber, the in-plane normal stressess22 ands33 are constant
while the inplane shear stresss23 vanishes. In the matrix, the
stress field is quite complex with all stress components pres
but approaches the uniform far-field stresss22

` with increasing
distance from the fiber. These features of the exact analytical
lution to the considered problem provide a convenient basis
the validation of the present theory.

The discretization of the repeating unit cell for the conside
problem is shown in Fig. 4. The cell contains 30330 subcells
with the fiber subcells having the same relative dimensions
those in Fig. 3. Thus the approximation of the fiber shape is
same as in the preceding case. The fiber volume fraction for
repeating unit cell is 0.05 which is sufficiently small to be co
sidered dilute, and thus appropriate for comparison with the ex
solution given above. The fiber elastic moduli are those of gl
included in Table 1, while the matrix is the previously employ
epoxy. The choice of these materials produces a high ela
moduli mismatch and thus a significant disturbance in the st
field in the vicinity of the embedded fiber.

The results obtained from the proposed theory have been
erated for an applied macroscopic strainē22 of 0.1 percent under
the constraintē1150, simulating the plane strain condition em
ployed in the exact analytical solution. The resulting macrosco
stresss̄22 obtained from the present theory (s̄2255.83 MPa) was
then taken to be the uniform far-field stresss22

` employed in the
exact analytical solution. Figure 5 comparess22 stress contours in
the repeating unit cell generated by the present theory with

Fig. 4 Volume discretization of the repeating unit cell em-
ployed in the analysis of a glass Õepoxy unidirectional compos-
ite with a fiber volume fraction of 0.05
0

Table 4 Comparison of predicted effective elastic moduli of a graphite Õepoxy unidirectional
composite „v fÄ0.60…

Effective Elastic Moduli E11 ~GPa! E22 ~GPa! G12 ~GPa! G23 ~GPa! n12 n23

Present model 142.9 9.61 6.09 3.10 0.252 0.35
Sun and Vaidya@16# 142.6 9.60 6.00 3.10 0.250 0.350
Generalized method of cells@12# 143.0 9.47 5.68 3.03 0.253 0.358
Transactions of the ASME
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corresponding contours obtained from Eqs.~67!–~71!, calculated
in the same region as that occupied by the repeating unit
Both qualitative and quantitative agreement is observed betw
the present model and the exact analytical solution, despite s
interaction effects due to the presence of adjacent cells which
be eliminated by further decreasing the fiber volume fraction
particular, thes22 field predicted by the present model within th
fiber is nearly uniform, and the features of the stress field in
matrix phase in the fiber’s vicinity are the same as those of
exact analytical solution. Similar results have been obtained
the s33 stress field. In contrast, thes22 stress distribution pre-
dicted by the generalized method of cells~not shown! is uniform
within each column of subcells along thex2-direction, due to the
first-order displacement representation within each subcell
gether with the imposition of traction continuity conditions at t
subcell interfaces in an average sense. Clearly, the higher-o
representation of the displacement field employed in the pre
theory accurately captures both the qualitative and quantita
features of the actual stress field.

Equally important is the agreement for thes23 stress field

Fig. 5 Comparison of the s22 stress contours in the repeating
unit cell of a glass Õepoxy unidirectional composite generated
by the present theory „a… and the exact analytical solution „b…,
„colorbar scale in MPa …
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shown in Fig. 6. In particular, the in-plane shear stress predic
by the present theory is nearly zero within the fiber, and exhib
the same qualitative and quantitative characteristics in the ma
region as that of the exact analytical solution, including the a
symmetric character about the unit cell’s axes of symmetry~along
which the shear shear stress vanishes! and the symmetric charac
ter through the unit cell’s center. This is in stark contrast with t
generalized method of cells which, due to the absence of coup
between the normal and shear effects, predicts zero shear s
everywhere within the repeating unit cell for the given loadin
This, too, is a direct result of the first-order displacement rep
sentation in the individual subcells employed by the generali
method of cells.

Finally, Fig. 7 compares thes22 distributions predicted by the
proposed theory and the exact analytical solution along the c
sections that define the unit cell’s material axes of symmetry,
along the linesy250.5 andy350.5. The quantitative agreemen
between the two approaches is clearly evident, as is the contin
of the normal traction component at the fiber/matrix interface
the y350.5 cross section~coincident with the loading direction!.
The sharps22 discontinuity at the fiber/matrix interface in th

Fig. 6 Comparison of the s23 stress contours in the repeating
unit cell of a glass Õepoxy unidirectional composite generated
by the present theory „a… and the exact analytical solution „b…,
„colorbar scale in MPa …
SEPTEMBER 2001, Vol. 68 Õ 705
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y250.5 cross section and the high stress gradient are also
well captured by the proposed theory, as is the asymptotic be
ior towardss22

` with increasingy3 . The overshoot at the fiber
matrix interface within the fiber itself is most likely caused by t
rectangular approximation of the fiber shape in this region~see
Fig. 4! which, in principle, can be further refined.

All of the above results were generated on a SUN ULTRA
work station. The CPU time for the two repeating unit cells co
taining 26326 subcells, used for comparison with the finite e
ment results, was 80 seconds. The analysis of the repeating
cell containing 30330 subcells, used for comparison with th
exact analytical solution, required 278 CPU seconds due to
corresponding increase in the size of the structural stiffness m
K in Eq. ~57!. The issue of the local stress field accuracy a
function of the repeating unit cell discretization, as well as
computational speed enhancement for repeating unit cells con
ing large numbers of subcells, will be addressed in separate c
munications. These issues can be efficiently investigated owin

Fig. 7 Comparison of the s22 stress distributions in the y 3
Ä0.5 „a… and y 2Ä0.5 „b… cross section of the repeating unit cell
of a glass Õepoxy unidirectional composite generated by the
present theory and the exact analytical solution
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the ease of the repeating unit cell’s construction, which also
cilitates incorporation of the proposed micromechanics appro
into structural analysis computer codes.

4 Summary and Conclusions
A new theory for periodic multiphase materials has been p

sented and demonstrated to be capable of estimating with s
cient accuracy both the effective moduli and local stress field
unidirectional composites with continuous reinforcement. T
outlined theoretical framework combines elements of the hom
enization technique, which provides a basis for consistent
proximation of the displacement field at the local level, with t
higher-order theory for functionally graded materials develop
previously by the authors. The higher-order displacement fi
approximation at the local level employed in the present appro
provides the necessary coupling between the local normal
inplane shear stress fields and the macroscopically applied l
ing. This coupling dramatically improves the accuracy of estim
ing the local stress fields relative to the generalized method
cells which is based on a first-order displacement approxima
at the local level.

Closed-form expressions for the effective moduli were provid
that are valid for microstructures characterized by repeating
cells with arbitrary reinforcement distributions under multiax
macroscopic loading due to the use of periodic boundary co
tions that follow from the homogenization approach’s framewo
Thus all the effective moduli can be generated irrespective
whether or not a repeating unit cell possesses planes of mat
symmetry. The repeating unit cell’s construction is simple due
the employed volume discretization that produces a rectang
grid whose subcells are appropriately assigned different mate
properties and dimensions so as to mimic a multiphase mater
actual microstructure. Further, the computational speed w
which effective elastic moduli and local stress fields are genera
is sufficiently fast for reasonably detailed volume discretizatio
of a repeating unit cell. These features of the presented the
facilitate investigations of the impact of different materials arc
tectures on both the macroscopic and local responses in an
cient and accurate manner. They also make it straightforwar
incorporate the theory into a structural analysis computer cod
a subroutine.
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Stress Analysis of Layered Elastic
Solids With Cracks Using the Fast
Fourier Transform and Conjugate
Gradient Techniques
The fast Fourier transform (FFT) technique has recently been applied to stress ana
of layered elastic solids, with a great deal of success. However, the existing FFT-b
methods are limited to intact solids. This paper explores the possibility of using FFT
stress analyses of layered elastic solids containing cracks. A new numerical approa
developed by combining three-dimensional FFT with the theory of periodic eigens
and the conjugate gradient method. The new method is primarily designed for anal
complex three-dimensional crack patterns in layered solids, such as those produc
thin protective coatings by roughness-induced contact stresses. The method sho
particularly advantageous for studying crack propagation in coatings, as it does
require remeshing when the crack shape changes. Numerical examples illustrating a
tages as well as limitations of the method are presented. Some unexpected resu
were obtained for multiple cracks in a thin coating are discussed.
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1 Introduction
Protective coatings have been widely used in many tribolog

applications, including cutting tools, engine components, a
magnetic data storage, and their importance can only be expe
to increase in the near future~@1,2#!. To understand the mecha
nisms underlying coating performance in various applications
is essential to analyze stresses generated in the coated s
under contact load as well as the coating material response to
stresses.

A remarkable breakthrough in the stress analysis of laye
elastic solids has been achieved in the last several years. It
brought about by the application of the fast Fourier transfo
~FFT! technique to contact mechanics~Ju and Farris@3#, Polonsky
et al. @4#, Nogi and Kato@5#, and Polonsky and Keer@6#!. The
FFT-based approach offers two important advantages. First,
elastic response functions of the layered solid are only require
the wave number domain, where closed-form analytical exp
sions for such functions are available. Conversely, in the class
approaches using basis functions~Chen and Engel@7#! or influ-
ence coefficients~Chiu and Hartnett@8#, Cole and Sayles@9#!,
inverse Fourier or Hankel transforms need to be computed
numerical integration, which is a very time-consuming operati
Second, the surface deflections produced by a given contact
sure distribution can be computed in just O(N log N) operations
by using FFT, whereN is the number of nodes in the surface gr
used to solve the problem. When the same operation is perfor
by the conventional direct convolution method~Kubo et al.@10#,
Francis@11#, and Ren and Lee@12#!, its computational cost is O
(N2). In the case of rough contact problems, whereN;105 or
even N;106 commonly arise~see@13# and references therein!,
the speed advantage of FFT becomes crucial. Rough con
analyses of layered solids have great practical significance, as

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 2
2000; final revision, Mar. 13, 2001. Associate Editor: D. Kouris. Discussion on
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
708 Õ Vol. 68, SEPTEMBER 2001 Copyright
cal
nd
cted
-
, it
stem
such

red
was
rm

the
d in
es-
ical

by
n.
res-

id
ed

tact
one

of the main functions of tribological coatings is substrate prot
tion against roughness-induced stresses. Furthermore, in m
situations, the coating thickness is comparable to the spatial ra
of roughness-induced stress spikes~@4#!.

However, even the most accurate prediction of roughne
induced contact stresses in a coated system does not answer a
equations. Even the most uniform coatings contain pre-exis
microcracks, and new cracks can be initiated under severe co
conditions. Under repeated contact load, cracks can propa
through coating thickness, which can ultimately lead to coat
failure ~@14,15#!. To understand how coatings behave under sev
contact conditions and how their strength and toughness are
fected by their microstructure, it is necessary to perform fract
mechanics analyses of layered solids under contact loading.
fortunately, the highly efficient FFT-based methods discus
above are not directly applicable to such problems. For crac
solids, the elastic response functions are generally unavail
even in the wave number domain. However, knowledge of th
response functions is essential for the method application~cf.
@5,6#!.

There is a different way of applying the FFT technique to el
tic solids with imperfections. Moulinec and Suquet@16,17# de-
scribed composite material as infinite elastic media containing
riodic distributions of eigenstrains and used FFT for calculat
the resulting stress fields. This is possible because elastic resp
functions of an infinite homogeneous medium are readily av
able in both the space and wave number of domains. Herm
et al. @18# applied a similar approach to stress analyses of so
containing periodic systems of inclusions or voids. They also
dicated how the same method can be applied to cracked so
However, the above approach is not directly applicable to con
mechanics problems because contacting solids are essentially
periodic in the direction normal to their surfaces.

A number of workers have applied the finite element method
modeling contact-induced coating fracture~e.g., Tian and Saka
@19#, Eberhardt and Kim@20#, and Souza et al.@21#!. There is no
conceptual difficulty for finite element method application to su
problems. However, finite element method does require bulk
cretization, and its numerical complexity is between O(N2) and O
(N3), whereN is the number of elements. Consequently, comp

1,
the
t of
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E
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grid,
xes
tation times can become exceedingly long in three-dimensio
crack problems involving multiple cracks and/or complex cra
shapes.

Lin and Keer @22,23# used the boundary element method
analyze a vertical three-dimensional crack lying in a multilay
solid. Kuo and Keer@24# extended the analysis to slant cracks. A
important advantage of the boundary element method is that
the crack faces need to be discretized. However, computatio
the corresponding influence coefficients, which involves eval
tion of inverse Hankel transforms, turned out to be a costly
eration even for relatively small numbers of elements. Furth
more, system assembly in the boundary element method
rather nontrivial task, which is not easily automated. Con
quently, computer code modification is often required to consi
a different crack geometry.

The present work explores the possibility of applying the F
technique to contact stress analyses of elastic solids with loca
three-dimensional inhomogeneities, such as cracks. It is tant
ing to try to take advantage of the O(N log N) complexity of FFT
when dealing with typically complex geometries arising in su
problems. A more immediate goal of this work is to develop
numerical tool suitable for analyzing complex crack patterns a
ing in coated systems subjected to roughness-induced co
stresses. To achieve these goals, a three-dimensional FFT
rithm is combined with the eigenstrain theory~similarly to the
approach of Moulinec and Suquet! and the conjugate gradien
~CG! method. To account for the essentially nonperiodic nature
contacting solids, a special correction term is used, which is c
structed using in-plain two-dimensional FFT. The resulting n
merical approach is described in this paper, followed by numer
examples. Application of the new approach to studying the ef
of coasting microstructure on crack propagation in thin coati
under contact fatigue conditions will be presented in a compan
paper.

2 Numerical Techniques
The present analysis deals with layered elastic solids contai

contact-induced three-dimensional cracks. The basic problem
ometry is shown schematically in Fig. 1. The layered solid c
sists of a semi-infinite elastic substrate and an arbitrary numbe
perfectly bonded elastically dissimilar layers. The topmost la
of the solid can contain an arbitrary number of cracks. Cracks
indicated in Fig. 1 by bold black lines located below thex-axis.
Although Fig. 1 only shows a cross section of such a crac
solid, the cracks in the figure have finite dimensions in all th
directions, i.e., they are three-dimensional cracks. Planar c
areas lying in different planes can be joined, forming kink
three-dimensional cracks. The rest of the layered solid is assu
to remain intact. This special case is of a considerable prac
significance, since roughness-induced coating fracture is likel
start from the surface. In principle, the method can be extende
cracks located in several layers and/or in the substrate, but su

Fig. 1 Layered solid containing contact-induced cracks
„shown as thick black lines …. Counterpart roughness is exag-
gerated. The y -direction is normal to the picture plane.
Journal of Applied Mechanics
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refinement is left to future work. Furthermore, it will be assum
for simplicity that all of the three-dimensional crack segments
in either vertical or horizontal planes. The cracks are driven
subsurface stresses generated when the cracked solid come
contact with a counterpart, which is shown in Fig. 1 as a jagg
form located above thex-axis. The counterpart can also be la
ered, but it contains no cracks. One or both of the solids can h
rough surfaces with known topographies. In addition to the c
tact stresses, uniform in-plain stresses, such as residual stre
may be present in the cracked layer. The Cartesian coordi
system (x,y,z) used in the subsequent analysis is also shown
Fig. 1.

It is not obvious how to apply FFT to cracked elastic solid
especially in situations where cracks lie in different planes or h
kinks. The basic approach explored in this paper is to replace
cracked layer by an intact elastic medium with an appropri
eigenstrain distribution, and then apply FFT to the latter. ‘‘Eige
strain’’ is a generic term encompassing various kinds of inela
strains in solids, such as thermal expansion, phase transform
strains, or plastic strains~Mura @25#, Chapter 1!. Cracks in elastic
solids can also be modeled as eigenstrain distributions~~@25#!,
Chapter 5!.

To illustrate this point, consider a two-dimensional crack n
mal to thez-direction and subjected to a tensile~Mode I! loading.
In the loaded state, the crack faces are open, while the no
stressszz vanishes along the crack line. The corresponding cra
opening displacement distribution will be denoted byDuz(x).
Next, imagine that the crack cavity is filled with the material
the cracked solid, and the continuity of the solid is restored. If
crack is filled completely, but without forcing any material in, th
material inside the crack will be stress-free. Hence, the stress
existing in the solid will not be affected by the above procedu
However, exactly the same stress state can be achieved by as
ing that the solid has been intact all the time and that the e
material has been produced by stress-free expansion of an in
tesimally thin strip within the solid. Therefore, the crack in i
open state can be equivalently replaced by an eigenstate dist
tion of the formgzz(x)5d(z)Duz(x), whered(z) is Dirac’s delay
function. The same reasoning can be applied to arbitrary syste
cracks in both two-dimensional and three-dimensional cases
cluding mixed-mode and nonplanar cracks. The main advan
of modeling cracks by eigenstrain distributions is that the crac
solid geometry, which is often complex, is replaced by a mu
simpler geometry of the corresponding intact solid.

As the crack-opening displacement distribution is not known
advance in crack problems, the equivalent eigenstrain distribu
is also initially unknown. It needs to be determined from the co
dition that the crack faces be free of traction stresses. If Gre
functions in closed form are available for the solid in its inta
state, the eigenstrain-induced stresses can be represented
integral over the crack area, thus obtaining a boundary inte
equation with respect to the crack-opening displacement. Disc
zation of this boundary integral equation leads to a boundary
ement method formulation suitable for three-dimensional cr
analyses~@26–28#!. However, Green’s functions in closed form
are unavailable for layered solids. Therefore, a different appro
to solving crack-related eigenstrain problems is proposed h
The equivalent eigenstrain distribution is determined by iterati
During each iteration step, the stresses generated by the cu
approximation to the eigenstrain are computed with the aid
FFT. The stress computation procedure is described next.

To enable the use of FFT, the cracked portion of the topm
layer is discretized by using a uniformly spaced rectangular g
aligned with the layer boundaries~Fig. 2!. The tensor component
of all elastic fields are stored as discrete arrays of nodal value
particular, each eigenstrain componentgi j (x,y,z) is represented
by a discrete array of nodal valuesgi j ( l ,m,n). Here indices in
parentheses refer to node positions in the three-dimensional
while subscript indices denote tensor components in the a
SEPTEMBER 2001, Vol. 68 Õ 709
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shown in Fig. 1. In what follows, the node indices will often b
omitted for brevity. As discussed above, we assume that all of
crack segments are either parallel or normal to the surface
addition, the crack segments will be assumed to lie in pla
containing grid nodes. Thus,gi j 50 for all nodes that do not lie
within a crack. The above assumptions can be relaxed by u
interpolation between grid nodes.

For each nodal arraygi j , the corresponding discrete Fourie
transform is computed by applying a three-dimensional F
algorithm:

ĝi j 5FFT~gi j !, i , j 5x,y,z. (1)

Based on the obtained discrete transformationsĝi j , the following
spectral representation of the eigenstrain is considered:

g̃ jk~x!5 (
l 50

Mx21

(
m50

My21

(
n50

Mz21

ĝ jk~ l ,m,n!exp~ i j~ l ,m,n!•x!,

j ,k5x,y,z. (2)

Herex is the coordinate vector,Mx , M y , andMz are the numbers
of grid nodes in the three directions,i is the imaginary unity, and
j( l ,m,n)5(jx( l ),jy(m),jz(n)) is the wave vector. The compo
nents ofj ~i.e., the wave numbers! are given by

j i~k!52pk8/~aiM i !, i 5x,y,z,

where ai is the grid spacing in the directioni, k85k for 0
<Mi /2, andk85Mi2k for Mi /2,k,Mi .

Unlike the original eigenstrain distributiongi j ~x!, which van-
ishes outside the grid volume,g̃i j (x) is infinite and periodic in all
directions. Furthermore, whilegi j (x) is localized in the crack
planes,g̃i j (x) is a continuous oscillating function distributed ov
the grid volume. However,g̃i j (x) vanishes at all grid nodes lying
outside the cracks, has a relatively low amplitude between s
nodes, and has relatively high and narrow peaks correspondin
the crack areas. Thus,g̃i j (x) does approximategi j (x) within the
grid volume. It can be said that in the present model, a crack
a small, but finite thickness~on the order of the grid spacing!.
When the grid spacings are small in comparison to the crack
mensions, the approximation ofgi j (x) by g̃i j (x) will be accurate.

Next, imagine that the periodic eigenstraing̃i j (x) lies in an
infinite elastic medium having the same elastic moduli as
cracked layer. Since the problem is linear, the terms in the rig
hand side of Eq.~2! can be analyzed independently. The stres
and displacements corresponding to each spectral compo
ĝ jk exp(ix•j( l ,m,n))will also be periodic, with the wave vectorj.
Their amplitudes will be given by the following expressio
~Mura @29#, and Mura@25#, Chapter 1!:

û j52 iK jk
21ŝklj l (3a)

ŝ i j 5Ci jkl ekl5Ci jkl Kkm
21ŝmnj ljn2 ŝi j , (3b)

whereŝi j 5Ci jkl ĝkl ,Kik5Ci jkl j lj j ,ei j are the elastic strains, an
Ci jkl are the elastic constants~the stiffness matrix!. The above
formulas apply to anyjÞ0. For j50, it can be shown thatûk

Fig. 2 Discretization of the cracked layer. Grid nodes are
shown as circles. Nodes carrying eigenstrain are filled.
710 Õ Vol. 68, SEPTEMBER 2001
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50 and ŝ i j 52 ŝi j . Using Eq. ~3!, the displacement and stres
amplitudes are calculated for all terms in Eq.~2!, thus obtaining
the discrete Fourier transforms of these fields. Discrete noda
rays corresponding to the periodic displacement and stress fi
generated by the eigenstraing̃i j (x) are then obtained by applying
the inverse three-dimensional FFT:

ũi5FFT21~ ûi !, i 5x,y,z; (4a)

s̃ i j 5FFT21~ ŝ i j !, i , j 5x,y,z. (4b)

Algorithms for inverse FFT are very similar to, and as fast
those for direct FFT.

Generally, the eigenstrain-induced elastic fields obtained fr
Eq. ~4! will satisfy neither the free surface conditions atz50, nor
the continuity conditions atz5h, whereh is the layer thickness.
To satisfy these conditions, and thus obtain a complete solu
for the layer with eigenstrain, two additional solutions are sup
imposed on the periodic solution (ũi , s̃ i j ). One of them corre-
sponds to a surface traction distributiont1 acting on the surface o
the elastic half-spacez.0, and the other to a traction distributio
t2 acting on the surface of the elastic half-spacez,h. Both of
these half-spaces are homogeneous and have the same e
moduli as the layer. Note that the two additional solutions are
associated with any eigenstrain; they are conventional elast
solutions produced by surface loads. The tractionst1 and t2 are
initially unknown. They are determined with the aid of two
dimensional FFT applied in thex andy-directions. First, the dis-
crete solutions (ũi ,s̃ i j ) is evaluated on the layer boundaries, th
obtaining the following two-dimensional nodal arrays:t̃ i

0

[s̃ iz( l ,m,0), t̃ i
h[s̃ iz( l ,m,Mz21), and ũi

h[ũi( l ,m,Mz21).
Their two-dimensional transforms, denoted byt̂ i

0, t̂ i
h , and ûi

h ,
respectively, are then obtained by using two-dimensional F
As the problem is linear, the spectral components can be anal
independently. Using the matrix notation, the boundary con
tions for each pair of wave numbers (jx ,jy) can be expressed a
follows:

t̂11T0ht̂21 t̂050; (5a)

Uh0t̂11Uhht̂21ûh5Usub~Th0t̂11 t̂21 t̂h!. (5b)

Here the symbolT denotes traction responses andU denotes dis-
placement responses. The matricesT0h and Uhh pertain to the
elastic half-spacez,h, the matricesTh0 andUh0 to the half-space
z,0, andUsub to the multilayered substrate to which the top lay
is bonded. Note that all these matrixes are functions of the w
numbers (jx ,jy). Solving the system of matrix Eq.~5! for the
vectorst̂1 and t̂2 yields

t̂152T0ht̂22 t̂0, (6a)

t̂25D21~Usubt̂h2ûh2Bt̂0!, (6b)

where

D5Uhh2Usub1BT0h, (7a)

B5UsubTh02Uh0. (7b)

For the uniform term~j50!, one simply obtainst̂152 t̂0 and
t̂250. The stress amplitudes generated by the tractionst̂1 and t̂2

at a given depthz can be expressed as follows:

ŝ1~z!5S1~z! t̂1, ŝ2~z!5S2~z! t̂2. (8)

Hereŝ1 andŝ2 are six-dimensional stress vectors, whileS1(z)
andS2(z) are the 633 subsurface stress response matrices of
half-spacesz>0 andz,h, respectively.

For an elastically isotropic material, the half-space respo
matrices,U, T, andSappearing in Eqs.~5!–~8! are easy to calcu-
late by using periodic Papkovich-Neuber potentials. They can a
be obtained as a special case from the layer responses pres
by Chen@30#. The multilayer substrate responseUsub is computed
Transactions of the ASME
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by using the well-known propagator matrix technique~@31,32#!.
The principal recursive relation of this procedure can be expres
as follows:

U ~n!5U001~U0h2U00T0h!D21B, (9)

where the matricesD and B are given by Eq.~7! with Usub

5U (n21).
The additional stress fields generated by the traction distr

tion t1 and t2 are computed successively for all horizontal se
tions of the three-dimensional grid. For sectionn, the stress am-
plitudes corresponding to all pairs of in-plane wave numb
(jx ,jy) are computed from Eq.~8! with z5naz , whereaz is the
grid spacing in thez-direction ~see Fig. 2!. The inverse two-
dimensional FFT is then applied to the resulting stress transfo
This operation yields the two-dimensional stress arrayss i j

n1( l ,m)
and s i j

n2( l ,m) corresponding to the tractionst1 and t2, respec-
tively. The total eigenstrain-induced stresss i j

e in the grid sectionn
is obtained by adding these two-dimensional arrays to the peri
stresss̃ i j :

s i j
e ~ l ,m,n!5s̃ i j ~ l ,m,n!1s i j

n1~ l ,m!1s i j
n2~ l ,m!,

0< l ,Mx , 0<m,M y . (10)

The above procedure is performed successively for all gird s
tions (0<n,Mz). The resulting stress distributions i j

e corre-
sponds to the given eigenstraingi j ~to the discretization error!. At
the same time, it satisfies both the free surface conditionsz
50 and the interface continuity conditions atz5h.

The stress fields i j
e is still periodic in thex andy-dreictions. In

principle, additional terms could be used to reduce the associ
periodicity error. However, such a refinement is left for futu
studies. Note that the present method is primarily intended
analyses of roughness-induced cracks in protective coatings
such applications, multiple cracks randomly distributed ove
large area are likely to arise. Hence, assuming in-plane period
of the problem is about as good an approximation as conside
isolated crack systems.

To obtain the total stress field in the layer, the contact-indu
stresses need to be computed. To a first approximation, the i
action between the cracks and the contact can be neglected.
leads to a conventional rough contact problem for a pair of in
layered solids with given surface topographies, which is solved
using the FFT and CG techniques. See@6,13# for algorithm de-
tails. In light of the above discussion, the periodicity correcti
procedure of Polonsky and Keer@6# need not be applied here. Th
surface deflection responses of layered solids, which are requ
for contact problem solution, are calculated with the aid of E
~9!. Having computed the contact pressure distributionp(x,y),
and assuming proportional traction, the contact traction com
nentst i

c are obtained for each surface node as

tx
c52 f p, ty

c50, tz
c52p, (11)

wheref is the traction coefficient,p is the nodal pressure, and th
frictional force is assumed to act in the negativex-direction. The
subsurface stress field generated by these contact tractions is
computed using Eqs.~6!–~9! with t̂ i

052 t̂ i
c , t̂ i

h50, and ûi
h50.

The resulting contact stress field will be denoted bys i j
c . Finally,

the total stress in the cracked layer is obtained as

s i j 5s i j
e 1s i j

c 1s i j
u , (12)

wheres i j
u is the uniform stress field existing in the layer~such as

a residual stress field!.
To solve the crack problem, it is necessary to find such

eigenstrain distributiongi j that the corresponding total stresss i j
satisfies certain conditions on the crack faces. To obtain a con
and efficient discrete formulation for the crack problem, a sta
array describing the crack geometry is constructed. Each nod
the grid is assigned three numbers:cx , cy , andcz . By definition,
Journal of Applied Mechanics
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cx51 is the node lies within a crack normal to thex-direction, and
cx50 otherwise. The numberscy and cz are defined similarly.
Then, the problem can be formulated as follows:

s i i 50 ~ci51, gii .0, no summation!; (13a)

s i i <0 ~ci51, gii 50, no summation!; (13b)

s i j 50 ~ci51, iÞ j !; (13c)

gii >0 ~no summation!; (13d)

gi j 50 ~ci5cj50!. (13e)

The above equations and inequalities apply to every node in
grid. Equations~13a! and ~13c! require that the three traction
stresses vanish at the faces of an open crack. Equation~13b!
means that a closed crack can support a compressive stress a
across its faces, but no tensile stress is allowed. Equation~13d!
stipulates that crack faces cannot overlap. Thus, the present m
is designed to treat the possibility of contact between crack fa
in a consistent way. This feature is essential for realistic mode
of contact-induced cracks. On the other hand, Eq.~13c! implies
that there is no friction between the faces of a closed crack.
though this assumption is only realistic for surface cracks in
bricated contact situations, it greatly simplifies the analysis. T
assumption may be relaxed in the future versions of the meth
Finally, Eq.~13e! implies that cracks are the only source of eige
strain in the problem.

The system of equations and inequalities~13! is solved by it-
eration, until Eq.~13a! and ~13c! are satisfied to the desired ac
curacy. Equations~13b!, ~13d!, and~13e! are enforced at all times
The iteration scheme used here is based on the CG method a
very similar to the one used in our rough contact solver~@13#!.
Since a very detailed description of the scheme was include
~@13#!, the details will be omitted here. The main differences b
tween the two schemes are that in the present case, iteratio
performed with respect to the eigenstrain instead of the con
pressure, the solution residual is based on the crack face trac
instead of the contact gap, and the load balancing procedure i
required. During each iteration step, the total stresss i j is recom-
puted for the current approximation togi j by using Eqs.~1!–~12!.
In the end of the solution procedure, the global stress field in
cracked layer is obtained, together with the eigenstrain distri
tion. The crack-opening displacement distributions for cracks
the layer can be approximated from the calculated eigenstrain
follows:

Dui5gi j aj ~ i 5x,y,z; cj51; no summation!. (14)

Hereaj is the grid spacing in the directionj. The above formula is
valid for all grid nodes except those at which two or more crac
intersect.

Numerical experimentation with the new computational meth
indicated that the convergence rate of the iteration proced
strongly depends on the problem geometry, particularly on
location of cracks with respect to the surface and the interface.
internal cracks, convergence is normally very rapid. On the ot
hand, surface-breaking cracks presented considerable challe
The problem stems from the rapid variation of eigenstrains ac
the crack plane, and from the fact that the eigenstrain-indu
stresses and the stress fields added to satisfy the boundary c
tions are constructed from different fundamental solutions. Ho
ever, this difficulty has been overcome by introducing long, n
row fictitious cracks lying in the free surface and running alo
the mouths of the surface-breaking cracks. The fictitious cr
only needs to be three grid spacings wide to achieve accept
convergence rates. Since the fictitious crack is so narrow, it d
not significantly affect the contact-induced stress field. The so
tion accuracy in the near vicinity of the crack mouth can be f
ther improved by extending both the grid and the surface-break
crack beyond the surface. This modification, however, is
nearly as important as the previous one. Since rapid converg
SEPTEMBER 2001, Vol. 68 Õ 711
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cannot be taken for granted in the present model, the itera
scheme was modified to restart the conjugate gradient algor
after every ten iteration steps. This measure ensures that the
jugate direction does not become corrupted by numerical e
even in the cases with slow convergence.

3 Results and Discussion
The numerical algorithms described above were implemen

in a computer code using the C11 programming language an
the Standard Template Library~STL!. The FFT implementation
was based on a function borrowed from Takuya Ooura’s F
package, which is freely distributed over the Internet. The num
cal examples described below were run on a personal comp
with a 450 MHz CPU and 256 MB RAM.

The new numerical method was first applied to subsurf
stress computation for a pair of crack-free layered solids hav
rough surfaces and engaged in contact with friction. The res
were compared to the output of a contact stress analysis prog
previously developed by the authors~@6#!. The stress distributions
computed by the two computer codes were identical to the rou
off error. Thus, the procedure used to enforce the boundary
dition ~Eqs.~6!–~10!! was verified.

To check the basic eigenstrain analysis~Eq. ~1!–~4!! and the
iteration scheme, the new method was applied to a penny-sh
crack lying in an infinite elastic medium. This geometry was o
tained by considering a counterpart perfectly bonded to the
face, and setting the elastic moduli of the layer, the substrate,
the counterpart to the same values. The crack was loaded
uniform tensile stress. The problem was solved on a 1283128
332 grid with equal spacingsa in the three directions. The crac
was normal to thez-direction and was centered with respect to t
grid. The crack radius was set toR516a, i.e. the grid length and
width were four times greater than the crack diameter. Such
extended grid was used to reduce the periodicity error. The r
tive accuracy goal for the iteration scheme was set to
31024.

The iteration process converged quite rapidly: Only 15 iterat
steps were required to compute the 2436 unknown eigenstr
arising in this example to the above accuracy level. The co
sponding CPU time was 0.8 hrs, which is a remarkably short t
for such a large-scale numerical model~N'53105, about 3
3106 nodal stress values!. Note that the present method calculat
the global stress field in the cracked layer. That is, all 33106

nodal stresses were computed during each iteration step. The
of three-dimensional FFT in the present algorithm was esse
for achieving such a remarkably high computation speed.

The obtained distribution of the Mode I crack-opening displa
mentDuz along a crack radius is shown in Fig. 3 together with t

Fig. 3 Crack-opening displacement distribution along a crack
radius for a penny-shaped crack: numerical solution „dia-
monds … and analytical solution „solid line …
712 Õ Vol. 68, SEPTEMBER 2001
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exact analytical solution. It is seen from Fig. 3 that the glob
crack-opening displacement behavior was reproduced reason
accurately, despite the relatively coarse discretization (R/a
516). The average relative error of the numerical solution w
about three percent. Such level of accuracy should suffice
most practical purposes. The main sources of numerical erro
the present method are the discretization error and the period
error, both of which stem from the use of finite Fourier series~see
Eq. ~2!!. The periodicity error will only arise for nonperiodic
crack geometries, such as the penny-shaped crack. As discu
above, roughness-induced cracking in coatings can be modele
periodic systems of cracks. The discretization error, however,
only be reduced by using finer grids, which would require mo
powerful computers. Thus, the present method is best suited
situations where a highly accurate analysis is not justified~e.g.,
due to uncertainty in the input parameters!, but even an approxi-
mate solution is difficult to obtain because of the complex pro
lem geometry. Roughness-induced cracking in tribological co
ings certainly appears to fall into this category.

One of the main reasons for the numbers of nodes being
large in the present method is that the application of FFT nec
sitates the use of uniformly spaced grids. Hence, grid nodes
not be condensed along the crack front, as is commonly don
finite element method models. On the other hand, the simplicity
a uniform rectangular grid is a major advantage, as it makes p
lem discretization a trivial step. This can be contrasted to the fi
element method, where mesh generation is one of the most d
cult steps in the analysis and typically requires the use of sop
ticated software. The present method is especially advantag
for modeling propagating cracks, since successive crack ge
etries are analyzed on the same grid and no remeshing is requ
Computation results for three-dimensional crack propagation
coatings with various microstructures will be reported in a co
panion paper.

It is also seen from Fig. 3 that the numerical solution sign
cantly deviates from the exact one at the nodes lying next to
crack front. This is to be expected, since the crack front nodes
not treated in any special way in the present method. Thus
extract a stress intensity factor from the near-tip elastic fields,
domain integral method~Moran and Shih@33#! would have to be
used. Such a procedure has not yet been implemented. How
computation of the absolute value of the stress intensity facto
not very useful in the case of protective coatings, and more ins
may be gained fromcomparativecrack analyses. Such analyse
can be used to shed light on the effect of various system par
eters, including the coating microstructure, on the coating tou
ness and fatigue resistance. The present method is suitabl
such analyses because the near-tip fields, although deviating
the exact solution, exhibit correct scaling with the global stre
field and hence with the load and the crack geometry.

To illustrate this point, the method was applied to the followi
pair of two-dimensional problems: a Griffith crack lying in a
infinite medium, and an edge crack normal to the free surface
homogeneous half-plane. The Griffith crack was twice as long
the edge crack. The cracks were subjected to a uniform ten
stress of the same magnitude. The stress intensity factor ratio
these two cases is known to be 1.12, with accuracy better than
percent~@34#!. Our computations yielded the following result
1.115 for the ratio of the crack-opening displacement values
inside the crack, and 1.107 for the ratio of the stress values
outside the crack. The corresponding relative error values
about 0.5 percent and about 1 percent, respectively. Thus,
near-tip elastic fields computed by the present method can be
with confidence for comparative analyses of cracks.

Next, the new computational tool was used to study the shie
ing effect of multiple cracks distributed around the front of
larger crack in a thin protective coating. The problem geometr
shown in Fig. 4. The analyzed solid consisted of a thin coat
layer (h54 mm! on a homogeneous elastic substrate. The ela
Transactions of the ASME
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moduli were chosen as follows:E5450 GPa,n50.2 for the layer,
and E5210 GPa,n50.28 for the substrate, whereE is Young’s
modulus andn is Poisson’s ratio. This set of elastic moduli a
proximately corresponds to the TiN/steel system. The main cr
in the coating was a semi-circular edge crack normal to the
face and having a radius of 2mm. On each side of the main crac
tip, a pair of secondary cracks was located~Fig. 4!. The four
secondary cracks were circular in shape withR51 mm, and were
parallel to the main crack plane. The spacing between them w
mm. Two types of loading were considered: Mode I loading
uniform tensile stress, and asperity contact loading. In the la
case, contact stresses were generated by a single asperity c
located on one side of the main crack. The contact area w
2.7-mm-diameter circle tangential to the crack mouth. The asp
ity contact pressure was almost uniform over the contact are
to plastic yielding of the counterpart. The yield pressure was se

Fig. 5 Distribution of the normal stress sxx in the main crack
plane for tensile loading; single crack case „a… and multiple
crack cases „b…

Fig. 4 Multiple cracks in a thin coating: „x ,z… view „a… and
„y ,z… view „b…
Journal of Applied Mechanics
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7 GPa and contact friction was neglected. For each of the
loading types, computations were performed both with and w
out secondary cracks. Thus, a total of four cases were conside

All four problems were solved on the same 64364364 grid
with equal spacings in all directions (a50.1 mm!. Only a few
lines in the input parameter file had to be modified wh
switching from one case to the next, which shows the convenie
of the new method. The relative accuracy goal was again se
2.531024. In each case, the accuracy goal was attained a
no more than 35 iteration steps, and the maximum CPU time
0.7 hrs.

The calculated stress distributions in the plane of the m
crack are shown in Figs. 5 and 6. For uniform tensile loading~Fig.
5!, the componentsxx , which is the normal stress acting acro
the stress plane, is shown. For contact loading~Fig. 6!, the crack
faces are closed by the compressive contact stresses, so th
crack is only loaded in shear~Modes II and III!. In this case, the
componentsxz , which is dominant in the central portion of th
crack, is plotted. The stress plots appear jagged because the
are defined on a rectangular grid, while the crack front is se
circular. Hence, the nodes nearest to the front and carrying
highest stresses lie at different distances from the front. This
fect, however, does not affect the present comparative analysi
the main crack has the same shape in all cases.

For tensile loading, stress concentration along the central
tion of the main crack front is suppressed conspicuously when
secondary cracks are present~cf. Figs. 5~a! and 5~b!!. For ex-
ample, the stress acting at the crack front midpoint is reduced
a factor of almost five. These results are consistent with the c
sical concept of microcrack shielding, which is believed to be
important toughening mechanism in ceramic material~@35#!.

In the case of contact loading, however, the shielding effec
secondary cracks is barely noticeable~cf. Figs. 6~a! and 6~b!!. The
stress at the crack front midpoint is only lowered by about

Fig. 6 Distribution of the shear stress sxz in the main crack
plane for contact loading: single crack case „a… and multiple
crack case „b…
SEPTEMBER 2001, Vol. 68 Õ 713
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percent in the presence of secondary cracks. The present re
indicate that the microcrack shielding effect is not nearly as str
for contact-induced cracks as it is for conventional cracks in str
ture, which are typically produced by tensile~Mode I! load. This
result is rather unexpected. There appears to be no intuitive ex
nation for such a marked difference in the magnitude of crack
shielding for the two loading types, as the crack geometry was
same in both cases. The above example demonstrates the pot
value of comparative numerical analyses for complex crack
terns and/or nontrivial loading types.

4 Conclusion
Cracks in layered elastic solids can be analyzed numerically

using the theory of periodic eigenstrains in combination w
three-dimensional FFT and conjugate gradient techniques. Th
sulting numerical approach is fast and easy to use. Although
method is sufficiently accurate for most practical purposes, h
accuracy is difficult to achieve with this approach. The method
best suited for comparative analyses of complex crack patte
such as those produced in thin protective coatings by roughn
induced contact stresses. Numerical results obtained with the
method for multiple cracks in a thin coating indicate that f
cracks driven by contact stresses, the microcrack shielding e
is much weaker than it is for the conventional Mode I loading
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On Plastic Collapse of Media With
Random Yield Strength
This paper concerns the plastic collapse of an elastic/perfectly plastic medium with
domly variable yield strength under a fixed load. The yield strength is represented
Gaussian random field of known statistical properties. Using the theorems of limit an
sis and the methods of reliability theory, algorithms are developed for the computati
upper and lower bounds on the probability of plastic collapse. By varying the magni
of the fixed load, bounds on the probability distribution function for the collapse load
be computed. Results are given for uniform pressure applied to a rectangular region
surface of an elastic/plastic half-space. For the corresponding plane problem, result
the classical Hill and Prandtl failure mechanisms are compared. Three-dimensiona
sults are found to differ significantly from those of the plane problem. Compariso
made with results of a previous approximate method for three-dimensional prob
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1 Introduction
For deterministic problems, the theory of limit analysis pr

vides a convenient method for determining upper and low
bounds on the plastic collapse load of a continuous medium
structural system. For structural systems with randomly varia
strengths, extensive research efforts have been devoted to com
ing reliability theory with plastic limit analysis; see, e.g., Wan
et al. @1#. In this class of problems which includes trusses a
frames, the yield limits of potential plastic hinges of structu
members are treated as random variables. Then the upper
lower-bound theorems of limit analysis allow computation
bounds on reliability for the plastic collapse load using the me
ods of reliability theory.

A similar approach is possible for problems involving contin
ous media with yield strength represented as a random field.
example, continuous random fields have been applied in
probabilistic analysis of slope stability in geotechnical engine
ing by Vanmarcke@2#, Li and Lumb @3#, Yucemen and Al-
Homound@4#, among others. These studies used the limit equi
rium method rather than the theorems of limit analysis to calcu
the failure probability of the slope. Following a somewhat diffe
ent approach, Nordgren@5# applied the kinematic theorem of plas
tic limit analysis to obtain an upper bound on the mean colla
load for problems of an elastic/perfectly plastic medium with ra
dom yield strength. To illustrate his method, Nordgren treated
plane problem of a wedge under pressure over a portion of
surface. In another probabilistic study, Ostoja-Starzewski and
@6# used the slip-line theory of plasticity to obtain the probabil
density function~p.d.f.! of the plastic collapse load for the plan
problem of a cylinder under internal pressure with spatially r
dom yield strength. Both of these last two studies employ
Monte Carlo simulation to obtain information on the probabil
of plastic collapse.

The present investigation provides general methods for ana
ing the reliability of an elastic/perfectly plastic medium who
yield strength is regarded as a continuous random field. The
posed methods combine the upper and lower-bound theorem

1Now at EQE International, Inc., 16850 Diana Lane, Houston, TX 77058.
Contributed by the Applied Mechanics Division of The American Society

Mechanical Engineers for publication in the JOURNAL OF APPLIED MECHANIC-
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plastic limit analysis with the computational methods of reliabil
theory. For a particular realization of the random field of yie
strength, application of each limit theorem involves dividing t
spatial region of the problem into simple elements on which
constraints of the theorem are enforced while optimizing the c
lapse load. The collapse calculation based on the upper-bo
theorem involves a nonlinear programming problem. The colla
load calculation based on the lower-bound theorem involve
linear programming problem. The calculated collapse load is u
to evaluate the limit state function in the computational appro
of modern reliability analysis. Bounds on the probability of failu
under a given load can thus be calculated by the numeric
efficient first-order reliability method~FORM! and by the Monte
Carlo simulation~MCS! method. Repeated calculations of failu
probability at different given loads enable bounds on the p.d.f
the plastic collapse load to be determined.

As an application of the methodology for illustrative purpose
the classical indentation problem of an elastic/perfectly pla
half-space is treated. The material is assumed to admit the
Mises yield function with randomly variable yield strength mo
eled as a homogeneous Gaussian random field with known m
variance, and covariance functions. The indentation load is c
sidered to be constant pressure applied over a specified recta
lar region of the surface of the half-space. It should be pointed
that the homogeneous Gaussian random field assumption i
approximation to the statistical structure of some engineering
terials on the macroscopic level. Considerations of random fi
based on micromechanical analysis and its associated discre
tion for numerical analysis have been carried out by Jiang e
@7# and Ostoja-Starzewski@8#.

For the plane problem of the illustration, upper and low
bounds on the p.d.f. for the plastic collapse pressure are comp
using the upper- and lower-bound theorems and FORM. The
sults are verified by MCS using importance sampling for rep
sentative cases. Results for the classical Hill and Prandtl fai
mechanisms are compared. The p.d.f. for collapse pressure in
Hill mechanism is found to have a lower variance than that of
Prandtl mechanism although the mean failure load is appr
mately the same in both cases.

Next, the three-dimensional indentation problem is treated i
similar manner using the upper-bound theorem and the prob
listic results are compared with those of the plane indenta
problem. In the presence of randomly varying yield strength,
indentation problem is essentially three-dimensional even if
geometry and loading suggests a two-dimensional approxima
Our numerical results show that two-dimensional models are
appropriate for this problem. Also, the present study offers a di
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way of calculating the three-dimensional reliability and assess
the validity of a previous approximate method~@2,4#!. It is found
that the reliability results given by the present study ag
fairly well with this approximate method, thus confirming i
applicability.

2 Theory of Plasticity and Limit Analysis
We begin with a brief review of the theorems and methods

plastic limit analysis for an elastic/perfectly plastic material w
deterministic inhomogeneous material properties. The theore
are stated for the special case of surface tractions governed
single load multiplier and in the absence of body force. Also, o
zero displacements may be prescribed on a portion of the bo
ary. A fuller treatment of these theorems, including proofs, m
be found, e.g., in Koiter@9#. In a later section we will conside
the case of random material properties and methods for t
characterization.

2.1 Upper-Bound Method. The upper-bound collapse theo
rem of plastic limit analysis states that an elastic/perfectly pla
body cannot support a given system of loads if any kinematic
admissible collapse mechanismėi j ~not necessarily continuous!
exists for which the work rate of the given loads exceeds the
of plastic energy dissipation in the body, i.e., the body will c
lapse if

E
Ss

ps i
0v ids.E

V
D~ ėi j !dV1E

SD

DS~dėi j !ds, (1)

whereV is the volume of the body,s i
0 is the distribution of ap-

plied stress forp51 on a portionSs of the body surface,S, p is
the load multiplier,SD is an internal surface of velocity discont
nuity, v i is the velocity field,dėi j is the strain rate jump acros
surfaceSD , andD andDS are the dissipation functions associat
with the strain rateėi j in V and dėi j on SD , respectively. To be
admissible, ėi j and dėi j must satisfy the strain rate-velocit
relations

ėi j 5
1

2
~v i , j1v j ,i !, dėi j 5

1

2
~dv i , j1dv j ,i !, (2)

wheredv i j denotes the jump in the discontinuous derivatives ofv i
on SD . Further, the velocity field must satisfy the zero displac
ment boundary conditions on the portionSu of the body surface
S(Ss1Su5S). Also, restrictions on admissibleėi j and dėi j are
imposed by the plastic flow rule as will be discussed.

The von Mises yield function is employed in the present stu
The flow rule associated with the von Mises yield criterion
quires that the strain rate field be incompressible~ėkk50! and that
no separation occurs normal toSD . Then the dissipation function
can be written as

D~ ėi j !5kA2ėi j ėi j , DS~dėi j !5kudv tu, (3)

wherek is the yield strength in pure shear anddv t is the tangential
velocity jump acrossSD . For an inhomogeneous material,k
5k(x).

The numerical method used in the present study for the up
bound theorem first divides the physical domain into a pla
region and a rigid region. The plastic region is then divided in
an assemblage of triangular elements for plane problems or t
hedral elements for three-dimensional problems. The velo
field is taken to be constant in each element. Sinceėi j 50 in each
element, the velocity field results in zero volumetric dissipation
V, i.e.,D(ėi j )50. Velocity discontinuities are allowed at the inte
element boundaries and on boundaries between the plastic re
and the rigid region. The element mesh used for the upper-bo
method~as well as for the lower-bound method to be discus
later! will be called thephysical element meshhereafter.

The inequality~1!, may be symbolically written as

pẆ~v,x!.Ḟ~v,x!, (4)
716 Õ Vol. 68, SEPTEMBER 2001
ing

ee
s

of
th
ms
by a
ly
nd-
ay

eir

-
tic
lly

ate
l-

-

d

e-

dy.
e-

per
tic
to
tra-
ity

in
r-
gion
und
ed

whereẆ(v,x) is the external rate of energy performed bys i
0 and

Ḟ(v,x) is the rate of internal energy dissipation,v represents
nodal values of an admissible velocity field andx represents the
nodal coordinates of the mesh. The least upper bound on the
tic limit load multiplier is obtained by performing the following
optimization problem:

p5minimize
v,x

H Ḟ~v,x!

Ẇ~v,x!
J (5)

subject toAv50, and v i* 51,

wherev i* is a particular velocity component which is taken as
for normalization. The equality constraintAv50 arises from the
admissibility condition of no normal velocity jump acrossSD ~as-
sociated with the von Mises yield criterion!. In view of the ele-
ment discretization, F˙ ~v,x! can be written as

Ḟ~v,x!5(
i 51

NS H E
Bi

k~x!udv t
~ i !udBiJ , (6)

whereNS is the total number of velocity jumps on element face
and Bi is the length of side i for a plane problem or the area
surfacei in a three-dimensional problem. The lengthy expressio
for Ẇ andA in ~5! are given in the theses of Ku@10#.

2.2 Lower-Bound Method. The lower-bound collapse theo
rem of plastic limit analysis states that if an equilibrium distrib
tion of stresss i j can be found which satisfies the equilibriu
equations and meets the stress boundary condition onSs and is
everywhere below the yield limit, then the body will not collap
under the applied loads.

A numerical method similar to that proposed by Lysmer@11# is
used here to determine the plastic lower bound. In this method
whole body is divided into an assemblage of physical element
in the upper-bound method. A linear stress field with unkno
coefficients is assumed for each physical element. Equilibri
within the element is satisfied by adjusting the coefficients. T
external equilibrium between the applied load onSs and the in-
ternal force can be written as

ps05H~x!Tz, (7)

where ps0 is the applied load vector,z is the collection of un-
known coefficients from all elements, andH is an index matrix
relatingps0 to z. In addition to satisfying equilibrium within each
element, the assumed stress field must satisfy equilibrium betw
each pair of elements. This condition of inter-element equilibriu
can be written as

Q~x!z50. (8)

The lengthy expressions for the matrixH andQ are given by Ku
@10#.

For computational purposes in problems of plane strain,
nonlinear von Mises yield function is approximated by a line
lower bound.

~sx2sy!21~2sxy!
2<~2k!2 (9)

The equality describes the interior of a circle in thesx2sy and
2sxy-plane with radius 2k. The circle is then replaced by a com
bination linear segments inside the circle. The linearized yi
function may be symbolically written as

D~x!z<b, (10)

where the expressions forD andb may be found in Ku@10#. For
an homogeneous distribution of yield strength,k(x)5k5const., it
is sufficient to ensure the no-yield condition throughoutV by
checking the linearized yield function at each vertex of all t
triangular physical elements~since the stress field is linear withi
each physical element!. For the inhomogeneous casek(x), satis-
Transactions of the ASME
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faction of ~10! requires checking at additional points dependi
on the form ofk(x) as will be discussed in Section 4.3.

The problem of finding the lower-bound plastic limit load ca
be formulated as the following optimization problem:

p5maximize
x,z

@H~x!Tz# (11)

subject toQ~x!z50, and D~x!z<b.

In the special case where the mesh shapex is specified,~11! is
a standard linear programming problem inz and efficient algo-
rithms are available for solving such problems~see, e.g.,@12#!.

3 Reliability Problem Formulation

3.1 Random Field Discretization. In the present study the
random yield strength,k(x), is considered to be a Gaussian ra
dom field of the form

k~x!5 k̄1 f ~x!, (12)

where k̄ is the constant mean yield strength andf (x) is a zero-
mean, homogeneous random field representing the fluctuatio
the yield strength. For the Gaussian random field, the mean
the covariance function fully describe the probabilistic structure
f (x). For plane problems the covariance function forf (x) is taken
as exponentially decaying in the form

C~x1 ,y1 ;x2 ,y2!5s2 expH 2pF S x12x2

dx
D 2

1S y12y2

dy
D 2G J ,

(13)

wheres2 is the constant variance off (x). Here,dx anddy may be
interpreted as the correlation lengths of the random field in thx
andy-directions, respectively. For three-dimensional problems
additional term can be inserted for thez-direction. In their study of
a plane slope reliability problem, Li and Lumb@3# observed that
the particular functional form of the covariance function does
significantly affect the reliability results, which depend mainly
the characteristic lengths and the variance off (x).

In order to discretize the random field, letsyi be the random
nodal value off at coordinatexi , whereyi is not to be confused
with coordinate variable. Then the random functionf (x) can be
approximated as

f ~x!5(
i 51

Nr

syihi~x!, (14)

whereNr is the total number of nodal points in the random fie
mesh andhi(x) is the interpolating shape function for nodal poi
i, which satisfieshi(xj )5d i j . With the standard deviations in-
cluded in the series,yi is a zero-mean Gaussian random varia
with unit variance. A convenient choice forhi(x) is a piecewise
linear function over a selected mesh. This particular linear sh
function method will be called the SF-Linear method. Other for
of shape functions are possible. A more accurate representatio
the shape function was given by Li and der Kiureghian@13# in the
form of

h~x!5CYY
21Cf ~x!Y , (15)

where h(x)T5@h1(x),...,hNr
(x)# is a row vector of dimension

Nr ; Cf (x)Y is a column vector of dimensionNr storing the cova-
riance betweenf (x) and each random field nodal values; andCYY
is the Nr3Nr covariance matrix between each pair of nod
points. BothCf (x)Y andCYY can be readily obtained by conside
ing ~13!. This shape function is obtained from the optimal line
estimation~OLE! theory and this discretization method will b
called the SF-OLE method.

3.2 First-Order Reliability Method „FORM …. We review
here a formulation of reliability theory given by Ditlevsen an
Madsen@14#. The Gaussian random variables governing the r
Journal of Applied Mechanics
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ability of a system can be collected into a vectorY, and a limit
state functiong(y) is introduced such that the system is safe
g(y).0 and fails ifg(y)<0. The failure probability is given by
the following integral:

pf5E
g~y!<0

f Y~y!dy, (16)

where f Y(y) is the joint probability density distribution function
of random variablesY. The reliability of the system is defined a
12pf . Let mY andCYY denote the vector of the mean value a
the covariance matrix ofY, and letU be a set of mutually inde-
pendent, standard normal random variables. A linear transfor
tion betweenY andU may be written as

Y5mY1TU, or u5T21~Y2mY!, where CYY5TTT.
(17)

After the transformation fromY to U, the limit state functiong(y)
may be stated in the standard normalU space as

G~u!5g~mY1Tu!. (18)

The first-order reliability method evaluates the integral~16! ap-
proximately by first solving the following nonlinear optimizatio
problem:

minimize
u

$b5uuu% subject to G~u!50, (19)

whereb is the reliability index and has the geometrical meani
of being the point onG(u)50 which is the closest to origin inu
space. The solution of~19! is termed the most probable failur
point or design point and is denoted byu* . Then, the first-order
approximation of failure probability is given by

pf5F~2b!, (20)

whereF~ ! is the cumulative Gaussian distribution function. The
is also a second-order approximation topf which is not used in
the present study.

4 Example Problem: Half-Space Under Normal Load
The principles state in the previous two sections will be co

bined and applied to a half-space under normal load as an
ample problem. In the reliability analysis the mesh coordinate
~5! and ~11! can be kept fixed at the values obtained from a d
terministic analysis to simplify the reliability computation. Th
validity of this simplification will be verified in a latter section
where numerical results are presented. In addition, by apply
this simplification, we obtain several useful characteristics of
limit state functions in the reliability method derived for the upp
and lower-bound approaches. These derivations are present
the present section.

4.1 Two-Dimensional Upper-Bound Limit State Function.
Figures 1~a! and 1~b! show the mesh discretizations based on
slip line solutions of the well-known Hill and Prandtl mech
nisms. The accuracy of these discretizations in the determin
analysis can be improved by using more triangles to model
centered fan region. For the discretization meshes shown in F
1~a! and 1~b!, it can easily be shown~@10#! that the kinematic
equality constraintAv50 in ~5! together withvi* 51 constitutes a
deterministic ~square matrix! system of equations andv is
uniquely determined. However, for finer discretizations the kin
matic equality constraints matrix is not square and optimizat
must be carried out on the velocity field. It will be illustrated
the following section by way of a numerical example that t
simple discretizations as shown in Figs. 1~a! and 1~b! produce
reasonably accurate results both in the deterministic and reliab
analyses; thus velocity optimization will not be needed in t
example problems considered here.
SEPTEMBER 2001, Vol. 68 Õ 717
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In the upper-bound reliability method the limit state functio
for reliability analysis at a fixed load multiplierp may be written
as

g~y!5
F~v,y!

Ẇ~v!
2p. (21)

After combining~6! and ~14!, Ḟ(v,y) can be expressed as

Ḟ~v,y!5(
i 51

Ns H udv t
~ i !u E

Bi

(
j 51

Nr

syjhj~x!dBiJ . (22)

It may be shown that the limit state functiong(y) is linear iny,
i.e.,

g~y!5~m01dTy!2p, (23)

wherem0 is the mean plastic strength. Using~17!, the limit state
function in standard normalU space can be written as

G~u!5R~u!2p, where R~u!5m01eTu, (24)

wheree5TTd. The above limit state function is in the form of th
difference between resistanceR and the applied load multiplierp,
BER 2001
n

e

thusR may be regarded as the plastic limit strength~limit load! of
the half-space. It may be shown~@10#! that R is a Gaussian ran-
dom variable with the following mean value and standard dev
tion:

mR5m0 , sR5ueu. (25)

It was possible to obtain the analysis expression~24! for the dis-
tribution of R in the upper-bound method because the limit st
function, ~23! or ~24!, are linear andv is known from determinis-
tic analysis. In the lower-bound method, to be discussed next,
limit state function is nonlinear and the distribution ofR has to be
determined numerically by repeatedly changing the applied l
multiplier p and re-solving the reliability problem.

4.2 Three-Dimensional Upper-Bound Limit State Function.
When the indentation pressure acts over a limited length,L, a
three-dimensional problem results, as illustrated in Fig. 2. Ad
tional assumptions involved in considering such a thr
dimensional failure mechanism will be discussed in later sectio

A limit state function for the three-dimensional problem simil
to ~23! can be expressed as
Transactions of the ASME



i

i

a

h

c
n
t
i

l

l
t
e

ty
ent

h
p-

ted

e

f
y-

ra-
it

ex-

e

o-
an

ld
ons.

no

pu-
r a
g~y!5~m081me1d0
Ty1de

Ty!2p, (26)

where m08 is the mean plastic strength provided by the failu
surfaces in the longitudinal direction, andme is the mean plastic
strength contributed by the two vertical end sections. After tra
forming the variables into the standard normal space, the l
state function can be written as

G~u!5~RL1Re!2p, (27)

whereRL5m081b1
Tu is the random strength provided by the fa

ure surfaces in the longitudinal direction,Re5me1b2
Tu is the ran-

dom strength provided from the two end sections, andb15d0
TT,

b25de
TT in which T is the transformation matrix between rando

variablesy andu. The plastic limit load of the three-dimension
half-space,R, is the sum ofRL andRe . The probability distribu-
tion of R is a normal distribution with the mean value and sta
dard deviation given by

mR5m081me , (28)

sR
25ub11b2u25ub1u21ub2u212b1•b2

5Var@RL#1Var@Re#12Cov@RL ,Re#. (29)

4.3 Lower-Bound Limit State Functions. In applying the
lower-bound reliability method, again we do not optimize on t
physical element discretization meshx in ~11!, i.e., H(x), Q(x),
and D(x) are kept fixed in the reliability optimization problem
~19!. The validity of this simplification will be illustrated by way
of numerical examples in the following section.

The limit state functiong(y) is defined by~11! with the applied
load p moved to the right-hand side, similar to~21!. We note that
the random variables only appear in the yield strength vectorb.

It has been mentioned previously that for homogeneous c
stant yield strength it is sufficient to check the yield conditions
the vertices of each physical element to ensure that no-yield
dition is satisfied everywhere. For nonhomogeneous yield stre
the yield check must be performed at more points. Since the s
field is assumed linear within each physical element, it is poss
to ensure the no-yield condition when the SF-Linear method~dis-
cussed in Section 3.1! is employed to discretize the random fie
by checking at a small number of known points. However, if oth
random field discretization methods are used, e.g., the SF-O
method, then relative minima of the yield function must be
cated in each physical element and the yield condition mus
checked at these minima. This calculation would seriously d

Fig. 2 Failure mechanism of a three-dimensional half-space
and random field discretization mesh
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riorate the numerical efficiency of the lower-bound reliabili
method. Thus, only the SF-Linear method is used in the pres
study.

Determination of the gradient of the limit state function wit
respect to random variables is an important step in reliability o
timization calculations using~19!. An efficient method of calcu-
lating the gradient vector ofg(y) with respect to componentyk
exists for the proposed lower-bound reliability method. As sta
above, since the functiong(y) depends only onyk throughb, we
may write

]g

]yk
5(

i 51

Nl ]g

]bi

]bi

]yk
, (30)

whereNl is the total number of linear inequality constraints. Th
term ]bi /]yk can be readily obtained from~10!, ~11!, ~12!, and
~14!. The term]g/]bi is the sensitivity of the linear program~11!
with respect tob. This sensitivity measure is the dual solution o
the linear programming problem. The dual solution is a b
product in solving a linear programming problem~see, e.g.,@12#!,
thus only minimal numerical effort is needed to evaluate the g
dient ]g/]yk . The behavior of the dual solution is such that
remains constant for a small perturbation ofb but varies when the
perturbation is large enough. Thus the limit state functiong(y)
exhibits piecewise linear characteristics. However, numerical
perience shows that the convergence behavior in solving~19! is
similar to that of solving a smooth limit state function since th
linear patterns are relatively small.

5 Numerical Results
Failure probabilities are evaluated numerically for tw

dimensional and three-dimensional indentation problems for
elastic/perfectly plastic material with randomly varying yie
strength using the methods developed in the preceding secti
The applied indentation pressure multiplierp is assumed to be a
deterministic constant, although the proposed methods have
difficulty treating problems withp as a random variable. Before
considering the random case, in order to verify proposed com
tational methods, we present deterministic numerical results fo
material with constant yield strengthk.

Fig. 3 Deterministic upper and lower-bound results for a plane
half-space indentation problem
SEPTEMBER 2001, Vol. 68 Õ 719
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Fig. 4 Element discretization of 78 elements and 36 random field nodes
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5.1 Two-Dimensional Deterministic Half-Space Indentation
Problem. The well-known theoretical plastic collapse pressu
for a half-space in plane strain without body force, according
the slip line theory, coincides for the Hill and Prandtl mechanis
and is given by

p* 5~21p!k̄. (31)
MBER 2001
re
to
s

In the numerical computations the optimization on mesh co
dinates has been performed as shown in Fig. 1 for Hill and Pra
mechanisms with a five-element discretization. Numerical res
for collapse pressure are shown in Fig. 3 for three, four, five,
six elements. The same optimized mesh coordinates are obta
for the upper and lower-bound methods using the same numb
Fig. 5 Convergence of reliability index with increasing number of random field
nodes
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Fig. 6 Convergence of reliability index with increasing number of random field
nodes
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elements. The results of Fig. 3 show that five elements suffice
reasonably accurate~between 2.7 percent and 1.2 percent! calcu-
lation of bounds on the collapse pressure in the deterministic c

5.2 Reliability Analyses of a Two-Dimensional Half-Space
Considering the Hill Mechanism. A few convergence studie
are conducted first to determine the appropriate sizes neede
the velocity and stress element, as well as for the random fi
mesh. A series of velocity and stress element discretizations w
used beginning from the five-element mesh shown in Fig. 1
ending with a fine element mesh with 78 elements shown in F
4, where the average element linear size is approximatelyB/4.
Three other meshes intermediate betweenB andB/4 ~with 21, 39,
and 63 elements! are also used in the convergence study, wherB
is the length of the applied indentation load. These meshes ar
based on the basic pattern of five-element mesh, with vary
details of dividing within each of the basic five elements.

Also shown in Fig. 4 is the random field mesh with 36~934!
random field nodes. Four other meshes are used for the con
gency study, with the discretizations of 6~332!, 21~733!, 60~12
35!, and 90~1536! nodes. Only half of the geometry is consid
ered due to the symmetry of the problem. However, in reliabi
analysis the material yield strength is randomly distributed a
hence not symmetrical. It may be readily understood that fail
over either half of the geometry is sufficiently critical than requ
ing failure on both side of the geometry; thus reliability analy
on only half of geometry is appropriate as will be done in t
present study.

The following parameters are used for the convergence stu

p/ k̄50.85p* / k̄, s/ k̄50.115, (32)

dx /B5dy /B50.4.

Figure 5 shows the convergence of the reliability index for
upper and lower bound methods using increasingly finer mes
for the velocity and stress elements. An interesting observation
the upper-bound method is thatb is insensitive to using finer
hanics
for

ase.

for
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-
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meshes. This shows that within the five-element pattern the o
mal solution for the upper-bound method requires only the fi
regions moving as rigid bodies even when the yield strength v
ies inhomogeneously. Convergence study for the stress eleme
the lower-bound method in Fig. 5 shows increasing accuracy ob
as the stress elements are refined.

In Fig. 5, results are shown for cases where the mesh sha
treated as fixed or variable in the optimization process to find
lowest b. For the given parameter given in~32!, the upper and
lower bounds ofb for the fixed mesh case are found to be67.4
percent relative to the average~3.86 and 3.33!, and63.4 percent
relative to average for the variable mesh case~3.68 and 3.44!. It
should be noted that significantly more computational efforts h
to be spent for including the mesh shapes as variables in
optimization Eqs.~5! and ~11!.

Figure 6 shows the convergence study for refining the rand
field mesh while the velocity and stress element meshes are
constant. The random field mesh of 36 nodes, shown in Fig. 4
found to be appropriate for the parameters considered in~32!.

Figure 7 shows the effects on the reliability indices of varyi
the correlation lengthd. For smallerd the realizations of random
field will typically have more peaks and troughs than for largerd.
With more peaks and troughs there is an averaging tendency u
integration to compute the internal energy dissipations~for the
upper bound method!, and the strength computed will be mor
concentrated around the average value given by~31!. The associ-
ated reliability indexb is higher for smallerd, because strength
thus computed is less likely to fall below the given external lo
when simulations are performed. Asd→`, the random field be-
comes a single random variable andb approaches a constan
value. Results in Fig. 7 for the lower bound methods follow t
same characteristics.

For the case~32!, the lower-bound FORM reliability analysis
gives b53.33 (pf54.3431024! for dx50.4. The Monte Carlo
simulation ~MCS! using importance sampling~@15#! gives
b53.36 ~pf53.8831024! for a coefficient of variation of four
SEPTEMBER 2001, Vol. 68 Õ 721



Fig. 7 Variation of reliability index with increasing correlation length
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percent, which is considered sufficiently small. The sampling d
sity function in the importance sampling simulation is chosen a
standard normal distribution centered at the design pointu* ~as
calculated from FORM! in the standard normal spaceu. A total of
3000 simulations is carried out in the MCS importance samp
calculation.

Based on the MCS result, it may be seen that the FORM an
sis gives a very accurate approximation to the lower-bound r
ability for this case. However, for very small correlation leng
dx50.4, the current stress element mesh may have to be fu
refined to obtain the same accuracy.

This confirmation of the FORM analysis is essential here sin
as discussed in Section 4.3, the lower-bound limit state functio
nonsmooth and exhibits piecewise linear characteristics. The c
putational efforts required by MCS using importance sampling
several hundred times that required for the FORM calculatio
By varying the applied load a full cumulative probability distr
bution of p/ k̄ has been obtained as shown in Fig. 8 for both
upper and lower-bound methods.

5.3 Reliability Analyses of Two-Dimensional Half-Space
Considering the Prandtl Mechanism. An analysis similar to
the foregoing is performed using the upper-bound method for
Prandtl mechanism. The physical element and random field
ment mesh are shown in Fig. 1~b!. For the given problem param
eters,~32!, the upper-bound reliability indexb is found to be 5.38,
compared tob53.86 when the Hill mechanism is considere
Thus, for small applied load,p,p* , it is much more likely for the
half-space to fail in the Hill mechanism rather than in the Pran
mechanism. The plastic limit load for the two mechanisms
both Gaussian distributed. The two mechanisms have appr
mately the same mean values but the Prandtl mechanism h
smaller standard deviation. This is due to the larger extent of
plastic region involved in the Prandtl mechanism. Further,
smaller standard deviation explains the higher reliability index
the Prandtl mechanism.
722 Õ Vol. 68, SEPTEMBER 2001
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5.4 Reliability Analyses of Three-Dimensional Half-Space.
A three-dimensional indentation problem is illustrated in Fig.
The reliability of the three-dimensional problem is studied he
using only the upper-bound method.2 We assume that the plasti
region of the three-dimensional half-space lies inside a cylindr
surface and is bounded by two vertical surfaces a distanceL apart.
The possibility of a plastic region with failure length less

2The lower-bound method also could be applied to the three-dimensional pro
but leads to intensive computations that were not pursued in this investigation.

Fig. 8 Cumulative probability distribution of collapse pressure
for the plane half-space problem with Hill’s mechanism
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Fig. 9 Variation of reliability index with respect to increasing failure length
for three-dimensional half-space under load pÄ0.85p *
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greater thanL is not considered in this study. This point may ca
for further investigation depending on the nature of loading
actual applications.

Results of reliability calculations for the three-dimension
half-space using the method of Section 4.2 are shown in Fi
with the failure length varying from 0 to 7.53d whered is the
given correlation length of the random yield strength field. F
simplicity of presentation the correlation lengths in thex, y, and
z-directions are assumed equal and denoted byd. Results are cal-
culated for the case ofB/d52.5, whereB is the width of the
applied pressure region.

The assumed failure mechanism has two possible orientat
~modes! for the failure cylinder. With reference to Fig. 2, in th
mode 1 failure mechanism the failure cylinder rotates about
axis parallel to thez-direction. In the mode 2 failure mechanis
the cylinder is turned 90 deg and rotates about thex-axis. The
possible occurrence of both failure modes constitutes a series
tem reliability problem~see, e.g.,@14#!.

Results for the reliability index are shown in Fig. 9 for a ran
of L/d for the two modes of failure. For the mode 1 mechanism
low values ofL/d the effect of the end sections dominates a
leads to high reliability indices~low probability of failure!. If the
end sections are not considered, whenL/d→0 the reliability in-
dex will approach the two-dimensional upper-bound solution~in
Section 5.2! for which b53.86. However, with the consideratio
of end sections, the half-space is much stronger and thus m
higherb values are observed in this regime.

For the mode 2 mechanism the roles ofB/d andL/d are inter-
changed. After calculations based on the proposed method
reliability index for mode 2 stars fromb52.35. From Fig. 9, it is
seen that mode 2 is more likely to occur than mode 1 in the ra
of 0<L/d<2.55B/d. For the range ofL/d.2.5, the mode 1
mechanism is more likely to occur than mode 2 mechanism.

As mentioned previously, the failure of the half-space is a se
problem with two mechanisms combined. However, owing to
dominant nature of one on the other mechanism except nea
L/d52.5, the system reliability variation curve will be nearly th
same as the more dominant component curve. AtL/d52.5, nu-
anics
ll
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merical results show the two modes are weakly correlated~modal
correlation coefficient 0.03!. The system reliability index is virtu-
ally identical to the component index ofb518.5 atL/d52.5 for
our present example.

In summary, the system reliability index variation will be vi
tually the sameb variation as the more dominant mode, exce
nearL/d52.5 where we expect to see a very small smooth tr
sition zone~not shown in Fig. 9!.

For this same problem, the approximate method of spatial
erage and variance reduction~@2,4#! is employed to produce ap
proximate solutions as follows:~1! the probability distribution of
the limit load of a two-dimensional problem is obtained using
known method,~2! Var@RL# ~see Section 4.2! is estimated by the
so-called ‘‘variance reduction function,’’~3! Var@Re# and
Cov@RL ,Re# are neglected,~4! the probability distribution of
three-dimensional limit load is assumed to be Gaussian w
known mean value and the estimated variance from step~2!. This
approximate method has been applied to three-dimensional e
slope stability problems. The solutions for mode 1 and 2 obtai
by this method are also plotted in Fig. 9. For very smallL/d the
approximate method produces unrealistically highb for mode 1.
This is due to the fact that at this range ofL/d the end effects are
significant, thus neglectingVar@Re# and Cov@RL ,Re# result in
large errors as has been discussed by Vanmarcke@2#. For the
approximate mode 2 curve atL/d50, the reliability index starts
from b52.10 ~a result of solving a two-dimensional problem b
the proposed method!. The general trends of the approximate s
lutions follows those of the solutions obtained by the present li
analysis-based methods.

6 Conclusion
Methods are developed in this study to assess the reliabilit

an elastic/perfect plastic medium against plastic collapse.
methods are illustrated by considering a half-space under no
load. By combining the plastic limit theorems with the methods
modern reliability theory, upper and lower bounds on the reliab
ity index may be computed efficiently for plane problems. T
SEPTEMBER 2001, Vol. 68 Õ 723
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probabilistic plastic collapse based on the classical Prandtl
Hill mechanisms are compared. The three-dimensional reliab
problem of half-space under normal load over a rectangle
solved using the upper-bound method. The present results
compared with those of a previous approximate method and
agreement is found for the critical failure mode. The metho
developed here can be applied to other problems and other
conditions. A study of slope stability under the Mohr-Coulom
yield criterion is in progress.
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Mode II Edge Delamination
of Compressed Thin Films
Ceramic coatings deposited on metal substrates generally develop significant compr
stresses when cooled from the temperature at which they are processed as a re
thermal expansion mismatch. One of the main failure modes for these coatings is
delamination. For an ideally brittle interface, the edge delamination of a compressed
film involves mode II interface cracking. The crack faces are in contact with normal s
acting across the faces behind the advancing tip. Frictional shielding of the crack tip
been shown to increase the apparent fracture toughness. Roughness effects ass
with the separating faces can also contribute to the apparent toughness. A model of
II steady-state edge delamination that incorporates combined friction and roughnes
fects between the delaminated film and substrate is proposed and analyzed. This m
used to assess whether frictional shielding and surface roughness effects are suffic
explain the large apparent mode II fracture toughness values observed in experime
@DOI: 10.1115/1.1388012#
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1 Introduction
Many thin film manufacturing techniques create resid

stresses in the film that can lead to failure. Ceramic coatings
posited on metal substrates generally develop significant comp
sive stresses as a result of thermal expansion mismatch w
cooled from the temperature at which they are processed. Sys
of this type are of interest as thermal barrier and wear coatin
Two of the primary failure modes for films in compression a
edge delamination and buckle delamination~c.f. Fig. 1!. The elas-
tic energy per unit area stored in the film which is available up
edge delamination is

G05
~12n2!s2h

2E
(1)

whereE andn are the Young’s modulus and Poisson’s ratio of t
film, h is the film thickness, ands is the uniform compressive
biaxial prestress in the film. To a first approximation,G0 is also
the energy available to drive the interface delamination crack
buckle delaminations. The typical flaw size~in the form of a deb-
onded region! needed to initiate a buckle delamination is abo
20h. Delaminations that emanate from a film edge and termin
in the interior of the substrate surface only require debond fla
as small as 1 or 2h for initiation ~@1#!. This would suggest tha
edge delaminations would be more commonly observed t
buckle delaminations. In fact, the opposite is true. Many syste
seem to fail primarily by buckle delaminations initiated aw
from the edges of the film.

There are many reasons why edge delaminations are less
mon than might be expected. Edge delamination is a mod
cracking phenomenon when the film is in compression, and
now well known that mode II tends to be associated with
highest interface toughness. By contrast, buckle delaminatio
mixed mode but approaches mode II as the delamination spr
and arrests~@2#!. In addition, there are extrinsic effects accomp
nying mode II edge delamination which contribute to the appar
toughness. Frictional sliding is one such effect~@3#!. Another,
which is the primary focus of this paper, is the effect that surfa
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roughness has on the delaminated film as it slides over the
strate. The roughness forces open the film-substrate interfac
the delamination crack faces displace, resulting in normal stre
at the interface that are larger than those produced in the abs
of roughness. This leads to greater frictional dissipation a
shielding of the crack tip. At the same time, however, it can a
wedge open the crack tip producing a mode I stress inten
component. Most failed interfaces have a characteristic roughn
The present study suggests that frictional slidingandwedging due
to roughness should generally be considered in combinatio
problems such as this. Specifically, it will be shown that nan
scale roughness has a significant influence on the effective m
II toughness of films whose thickness is in the micron range.

2 Formulation of the Model

2.1 Modeling the Delaminated Interface. We study
steady-state edge delamination of a thin film of thicknessh with
shear modulusm5E/(2(11n)) and Poisson’s ration that is in
uniform residual compression and is bonded to a very thick s

-
on

tment
nd

he

Fig. 1 A schematic showing an edge delamination and a
buckle delamination and the minimum flaw sizes necessary to
achieve steady-state
001 by ASME SEPTEMBER 2001, Vol. 68 Õ 725
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strate having the same elastic properties. Stringfellow and Fre
@3# showed that the effect of elastic mismatch between film a
substrate is secondary to the role of friction. The same is expe
for the roughness effect studied here, and thus an investigatio
the role of dissimilar materials is postponed. The delaminatio
assumed to have propagated away from the edge a distance t
much larger than the film thickness, such thath is the only rel-
evant length scale. Friction and roughness effects are signifi
mainly within a few film thicknesses of the interfacial crack tip,
the film-substrate system can be modeled as an elastic half-s
with a thin film perfectly bonded along half of its length and ful
delaminated along the other half. Under plane strain conditi
the problem reduces to a two-dimensional one where the film i
a state of uniform compression far ahead of the interfacial cr
tip and is stress free far behind the crack tip.

Using the superposition scheme shown in Fig. 2, the problem
interest~c.f. Fig. 2~a!! can be decomposed into the problem d
picted in Fig. 2~b! and the reduced problem shown in Fig. 2~c!.
Note that there is no displacement of the film relative to the s
strate for the problem shown in Fig. 2~b!. This can be understood
by imagining a film that is under uniform compression and then
debonded along half of its length with a compressive stress
plied remotely to hold it in place. Since the displacement is ze
the stress intensity is also zero. Thus the displacement and s
intensity for the problem of interest are identical to those for
reduced problem. It is the reduced problem that is solved in
paper.

Roughness on a scale that is small relative to the film thickn
is assumed to be present at the interface between the delami
film and the substrate. Specifically, the results which emerge f
the present study suggest that roughness on the order of one
dredth the film thickness or even somewhat smaller has the lar
effect on the apparent energy release rate. The roughness
sumed to be random on the delaminated interface such that
sliding across the interface has occurred on the order of
roughness half-wavelengthl, the two surfaces become uncorr
lated and are thereafter propped open a distanceR, the amplitude
of the roughness. This is depicted in Fig. 3, although the influe
of the two-dimensionality of the roughness is not portrayed.

Fig. 2 A schematic of the superposition scheme
726 Õ Vol. 68, SEPTEMBER 2001
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To model the roughness, the relative normal displacemen
the two surfaces,dn , is assumed to be related to the relati
tangential displacement of the two surfaces,d t , by

dn~s!5R~12e2d t~s!/ l !, (2)

which is plotted in Fig. 4. We retain the assumption of Coulom
friction at the interface such that on a scale that is large relativ
l, but small compared toh

sxy~x!52m fsyy~x! x.0, (3)

when sliding occurs. Thus, the rough interface is replaced b
planar crack where the two components of crack-face displa
ment are constrained by~2! and the two components of tractio
are constrained by~3!.

Conditions must be imposed to ensure that the solution is c
sistent with the sign of the friction condition:~i! the normal stress
behind the delamination crack tip must be compressive and~ii ! the
tangential displacement must be a monotonically increasing fu
tion of distance behind the tip. The latter of these conditions
sures that the sliding is in one direction under the steady-s
propagation.

2.2 Integral Equation Formulation. As already noted, the
solution to the problem in Fig. 2~b! makes no contribution to the
stress intensity factors. The reduced problem shown in Fig. 2~c! is
formulated and solved thereby providing the stress intensity

Fig. 3 The coupling of normal and tangential displacements
caused by surface roughness

Fig. 4 A plot of the displacement coupling relationship
Transactions of the ASME
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tors for the problem in Fig. 2~a!. The interfacial crack between th
film and the substrate is equivalent to a continuous distribution
elastic edge dislocations~@4#!. A single elastic edge dislocation
distanceh below the free surface of the half-space~i.e., on the
x-axis of the coordinate system depicted in Figure 2~a!! creates a
stress field in the surrounding material that is given by the A
stress function:

F5
m

2p~12n! H 2byx~h2y!1bx@x21~2h2y!y#

x21~2h2y!2 h

1
byx2bxy

2
logF x21y2

x21~2h2y!2G J , (4)

where (bx ,by) is the Burger’s vector for the dislocation~a factor
of two missing from the expression forF given by Stringfellow
and Freund has been incorporated here! ~@3,5#!. The stress field for
a single edge dislocation located at a positions on thex-axis can
be derived from Eq.~4!. With

bx~s!5
dd t~s!

ds
(5)

by~s!5
ddn~s!

ds
(6)

on thex-axis a distancex behind the crack tip, the stresses a
given in terms of the dislocation distribution (bx(s),by(s))ds by

sxy~x!5
m

2p~12n! F E
0

` g11~j!

j
bx~s!ds1E

0

`

g12~j!by~s!dsG ,

(7)

syy~x!5
m

2p~12n! F E
0

`

g21~j!bx~s!ds1E
0

` g22~j!

j
by~s!dsG ,

(8)
wherej5x2s and

g11~j!5
64h2116h4j2116h2j4

~4h21j2!3 , (9)

g12~j!5
232h5124h3j2

~4h21j2!3 , (10)

g21~j!5
32h5224h3j2

~4h21j2!3 , (11)

g22~j!5
64h6248h4j2

~4h21j2!3 . (12)

The single governing integral equation expressed withbx(s) as
the unknown is obtained by imposing Eq.~3!:

E
0

` g11~j!

j
bx~s!ds1E

0

`

g12~j!by~s!ds

52m fF E
0

`

g21~j!bx~s!ds1E
0

` g22~j!

j
by~s!dsG ,

(13)

where from Eqs.~2! and ~6!,

by~s!5
R

l
bx~s!expF2

1

l E0

s

bx~h!dhG . (14)

It is known from linear elastic fracture mechanics thatbx(s)
has as21/2 singularity at the crack tip. Far behind the tip the fil
is in a state of plane strain extension. These conditions are
scribed as
Journal of Applied Mechanics
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bx~s!}
1

As
as s→0, (15)

bx~s!→ s~12n2!

E
as s→`. (16)

The stress intensity factors are given by

KI5 lim
s→0

A2ps

4

E

12n2 by~s!, (17)

KII 5 lim
s→0

A2ps

4

E

12n2 bx~s!. (18)

Note that by Eq.~14! that ass→0,

by~s!→ R

l
bx~s!, (19)

therefore the mode mix is fixed according to

KI5
R

l
KII . (20)

The mode II stress intensity factor for a steady-state edge del
nation with zero friction and no roughness is

KII
0 5s Ah

2
, (21)

and the energy release rate is given by Eq.~1!. Normalizing by
these values and applying

G5
12n2

E
~KI

21KII
2 !, (22)

yields the following relationships for the energy release rate:

G
G0

5S KII

KII
0 D 2F11S R

l D 2G . (23)

The dimensionless equation shown in the Appendix reveals
the solution is determined by three dimensionless parameters

KII

KII
0 5 f S s̄5

sh~12n2!

El
,R̄5

R

l
,m f D . (24)

Further details of the formulation, along with aspects of the n
merical solution scheme, are presented in the Appendix.

3 Results
The combined effect of friction and roughness on the mode

stress intensity factor is shown in Fig. 5. There, plots ofKII /KII
0

as a function ofs̄ are presented for various roughness levels a
two values of the coefficient of friction. When friction is prese
without any roughness, the normalized stress intensity facto
independent of the film stress. Its reduction below the frictionl
limit ( KII /KII

0 51) is relatively small and is precisely in accor
with the results of Stringfellow and Freund@3#. Combined friction
and roughness lead to a dependence of the stress intensity f
on s̄ such that the full effect of the roughness is attained wh
s̄'2. For s̄>2, the effect of roughness onKII is pronounced.
Values ofR/ l as large as unity cannot be ruled out and, indeed,
to be expected when one or both of the materials
polycrystalline.

The effect of friction and roughness on the normalized ene
release rate from Eq.~23! is plotted in Fig. 6 for the same two
values ofm f . The competition between the reduction inKII due to
combined friction and wedging and the increase inKI due to
wedging~c.f. Eq.~14!! is evident. At sufficiently smalls̄, G/G0 is
increased above the zero roughness limit due to the domi
influence of wedging onKI . For m f5.5, G/G0 exceeds the zero
SEPTEMBER 2001, Vol. 68 Õ 727
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roughness limit for alls̄ if R/ l 51. However, it is apparent tha
there is a significant range ofR/ l and s̄ such that the combined
effect of friction and roughness reducesG/G0 by approximately
twice the effect of friction alone. Form f5.5, the maximum crack-
tip shielding corresponds toG/G0'.7 for a roughness levelR/ l
'.5 ands̄.2. Form f51, the corresponding value isG/G0'.4.

Examples of the normal stress distribution acting on the in
face behind the crack tip are given in Fig. 7. Roughness incre
the normal stress within a distance of about one film thickn
from the tip. It is this increase which provides greater friction
dissipation and thereby diminishes the mode II stress inten
factor. The normal stress becomes very slightly negative al
part of the interface atx/h.5, but its magnitude is so small tha
there is no need to extend the formulation to account for a s
ment of the interface that is open. This condition has be
checked for the full range of parameters governing the solution
addition, the monotonicity condition for the tangential crack d
placement, which is necessary for consistency of the imposed
tion condition, was satisfied.

The reduction in the energy release rate~c.f. Fig. 6! gives fur-
ther insight into the combined effect of friction and interfa
roughness. The simplest possible condition for crack adva
based on crack-tip stress intensity would be the mode-indepen
criterion

G5G0 (25)

whereG0 is considered as the separation energy for the interfa
Then, the apparent mode II toughness for steady-state propag
would beG[G0 sinceG0 is the overall energy release rate. Usin
the results of Fig. 6, one can plot the normalized apparent mod
toughness,G/G0 , as is done in Fig. 8 forR/ l 5.5.

Fig. 5 Normalized mode II stress intensity factor
728 Õ Vol. 68, SEPTEMBER 2001
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4 Concluding Remarks
Results of this study indicate that the mechanism of combi

frictional sliding and roughness-wedging has an effect on the
parent mode II fracture toughness that can be as much as twic
effect of friction alone. Toughness values as large as 2.5 times
separation energy of the interface were predicted. The stres
tensity at the crack tip was found to decrease significantly with
increase in the amplitude of the roughness. It was also found
the presence of roughness at the interface induces a mode I s
intensity that is at most equal to the mode II stress intensity for

Fig. 7 Normal stress at the interface for m fÄ1.0 and s̄Ä5.0

Fig. 6 Normalized energy release rate
Transactions of the ASME
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range of roughness parameter values considered. Thus, wh
generally considered a pure mode II phenomenon is in fact m
mode at the tip when the interface is rough.

In addition to the roughness parameter, the analysis reve
that the normalized energy release rate depends on one impo
dimensionless stress parameter,s̄5sh(12n2)/El. Consider a
film whose thickness is about one micron and supports a stre
modulus level of about .01. A roughness half-wavelength,l, on the
order of ten nanometers would produce a value ofs̄ large enough
to significantly affect the apparent interface toughness. Suc
wavelength is fully consistent with the underlying assumptions
the model and the analysis.

Previous models that considered only frictional sliding show
that material mismatch can further increase the apparent mo
fracture toughness when the film is more compliant than the s
strate~@3#!. It is expected that the same trend would be obser
when roughness effects are considered in combination with
tional sliding for the bimaterial problem, yielding apparent mo
II fracture toughness values even larger than those predicte
this study. For an interface with an array of contacting asperit
a more realistic representation of the coefficient of friction can
expressed as the sum of a constant term and a term that is pr
tional to the dilatancy of the interface~@6#!. For the roughness
model assumed in this paper, the dilatancy term is positive. T
incorporating a more realistic friction model would result in ad
tional frictional dissipation and a corresponding increase in
apparent mode II toughness. The results of this model in conju
tion with these additional mechanisms that enhance the tough
shows that it is indeed possible to predict mode II toughness
ues that begin to become comparable to those found in exp
ments by modeling the combined effect of frictional sliding a
roughness-wedging at the interface. Furthermore, the strong
pling between frictional sliding and roughness-wedging sho
that both effects should be considered in combination when m
eling the delamination of compressed thin films.
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Appendix
To facilitate numerical solution, the domain of integration

transformed froms,xP@0,̀ ) to t,zP@21,1# by setting

Fig. 8 Normalized apparent mode II fracture toughness for R̄
Ä0.5
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s5h
11t

12t

and

x5h
11z

12z
.

When the displacement coupling relationship given by Eq.~2! is
used, Eq.~13! can be expressed in terms of dimensionless v
ables as

E
21

1

b~ t !H k11~z,t !~12z!

~z2t !~12t !
12m f

k21~z,t !

~12t !2 J dt

52R̄E
21

1

b~ t !exp@2s̄d~ t !#H 2
k12~z,t !

~12t !2

1m f

k22~z,t !~12z!

~z2t !~12t ! J dt, (26)

for the unknown

b~ t !5
E

s~12n2!
bxS h

11t

12t D , (27)

where

R̄5
R

l
, (28)

s̄5
sh~12n2!

El
, (29)

d~ t !5
E

s~12n2! E21

t

bxS h
11t

12t D 2

~12t!2 dt, (30)

k11~z,t !5g11S h
2~z2t !

~12z!~12t ! D , (31)

k12~z,t !5g21S h
2~z2t !

~12z!~12t ! Dh, (32)

k21~z,t !5g12S h
2~z2t !

~12z!~12t ! Dh, (33)

k22~z,t !5g22S h
2~z2t !

~12z!~12t ! D . (34)

The dimensionless end conditions are expressed as

b~ t !}
1

A11t
as t→21, (35)

b~ t !→1 as t→1. (36)

Any real continuous function defined on the interval@21, 1#
can be approximated by a finite linear combination of Chebysc
polynomials of the first kind. Thus the dislocation density can
expressed as

b~ t !5
1

A11t
F&1~12t !(

n51

N

anTn21~ t !G , (37)

where the integerN is adjusted to achieve the desired accura
and the expansion coefficientsan are unknown. Both boundary
conditions are satisfied by this form. Substituting Eq.~37! into Eq.
~26! yields an integral equation involving theN unknown expan-
sion coefficients that must be satisfied for allzP@21,1#. Satisfy-
ing the integral equation atN values ofz produces anN3N linear
systemAx5b where the components of theN31 vectorx are the
expansion coefficients. This linear system can be solved for
SEPTEMBER 2001, Vol. 68 Õ 729
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unknown coefficients which can then be used to construct
dislocation density, stress intensity factors, and energy rele
rate.

The components of theN3N matrix A and theN31 vectorb
are singular integrals, the integrands of which are expressible
form that permits numerical evaluation using Gauss-Chebysc
sums for singular integrals derived by Erdogan and Gupta@7#.
Convergence must be achieved for the individual Gau
Chebyschev sums used to evaluate the integrals by choosin
number of terms in each sum,M, sufficiently large and for the
Chebyschev expansion by choosingN sufficiently large. Numeri-
cal error in the linear system increases withN and for someN
surpasses the accuracy gained. Thus an optimal value ofN exists
and was determined.

The Gauss-Chebyschev sums can only be evaluated at the
of the (M21)th Chebyschev polynomial of the second kind.
M /2N is a positive integer, the zeros of theNth Chebyschev poly-
nomial of the first kind are a subset of the zeros of the (M
21)th Chebyschev polynomial of the second kind. This fact w
utilized to evaluate the Gauss-Chebyschev sums at the zeros o
Nth Chebyschev polynomial of the first kind, which was the on
730 Õ Vol. 68, SEPTEMBER 2001
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set ofN values ofz for which good convergence was found. Co
vergence to six decimal places was achieved forN512 andM
548,000 for the case wherem f50 andR̄50 which has a known
analytical solution. These values ofN and M were used for all
subsequent calculations involving nonzerom f andR̄.
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A Complex Potential-Variational
Method for Stress Analysis of
Unsymmetric Laminates With an
Elliptical Cutout
A combined complex potential-variational solution method is developed for the analy
unsymmetrically laminated plates with finite planform geometry, subjected to arbit
edge loads, and with an inclined elliptical cutout. This method uses complex pote
and their Laurent series expansions to reduce the potential energy of a plate to a co
integral that is evaluated numerically by the trapezoidal rule. A variational statemen
equilibrium is applied to the potential energy to obtain a linear system of equation
terms of the unknown coefficients of the Laurent series, whose solutions yield the
and displacement fields for a given problem. This approach represents a computatio
efficient alternative to boundary collocation procedures that are typically used to s
problems based on complex potential theory. Comparisons are made with correspo
results obtained from finite element analysis for a square unsymmetrically laminated
with a central inclined elliptical cutout and subjected to biaxial tension. The res
confirm the validity of the solution method.@DOI: 10.1115/1.1379528#
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Introduction
Unsymmetrically laminated composite structures are continu

to receive attention in the search for ways to enhance struc
performance by exploiting material anisotropy. A fundamen
structural element of this class of structures, which is of gr
practical importance, is the flat laminated plate with one or m
cutouts. Structural elements of this type often appear as com
nents of aircraft wing spars and ribs. Behavior trends that sh
the effects of unsymmetrically laminated construction on t
class of structural elements are essentially unknown at the pre
time. Thus, it is beneficial to have an efficient special-purp
analysis method that can be used to conduct extensive param
studies in a timely manner and at relatively low costs. Althou
the finite element method and the boundary element method
capable of determining the response of general plate config
tions, like an unsymmetrically laminated plate of general pla
form shape and with a cutout, they often require extensive c
putational effort to obtain accurate results. One example
typically manifests this computational difficulty is a plate with
very narrow cutout that is used to simulate a crack.

An analytical method that appears to be suitable for inexp
sive parametric studies of the structural response of flat uns
metrical laminated plates with one or more cutouts of gene
shape and with a general planform shape involves the use of c
plex potential theory. In the past, complex potential theory
been used successfully for the stress analysis of isotropic p
and symmetrically laminated composite plates with cutouts. La
nated plates of this class exhibit, at most, anisotropy in the form
coupling between in-plane extension or contraction and shear,
between pure bending and twisting deformations. For this clas
plates, the in-plane and bending responses are completely
coupled, can be solved independently, and require only two c

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
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Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
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plex potentials in the analysis. As a result, complex poten
theory has been applied to the in-plane and out-of-plane resp
problems separately. For example, Prasad and Shuart@1# solved
the bending problem for a symmetrically laminated plate with
elliptical cutout. This study used a one-term solution to determ
the stresses around a cutout in an infinite plate subjected to
field bending moments. Later, Shuart and Prasad@2# solved the
bending problem for a symmetrically laminated plate with fin
length and width, with an elliptical cutout, and subjected to ed
moments by using their previous formulation and combining
Laurent series approximation for the stresses and displacem
with a boundary collocation method. In that study, the bound
collocation technique used a least-squares minimization pro
dure. Owen and Klang@3# and Britt @4# applied a similar proce-
dure to the in-plane stress analysis of symmetrically lamina
composite rectangular plates with finite length and width and s
jected to compression, shear, and a combination of these loa

Complex potential theory has also been combined with ot
methods to solve problems. For example, Chen@5# formulated a
solution for a plate with finite dimensions and a cutout and s
jected to bending and twisting moments by combining Laur
series approximations for the complex potentials with an ene
method. In this approach, the energy method is used to elimi
the need for a boundary collocation procedure to determine
unknown constants in the Laurent series. Owens@6#, Jones@7#,
Jones and Klang@8#, and Britt@9# solved the buckling problem for
symmetrically laminated rectangular composite plates with fin
length and with a cutout by combining complex potential theo
with the Rayleigh-Ritz method. In these studies, the prebuck
stress field was obtained by using Laurent series approximat
for the complex potentials and boundary collocation procedu
Then, the two-dimensional stability functional, defined over
doubly connected region, was integrated numerically to form
linear and geometric stiffness matrices of the buckling proble
Qi @10# applied a similar approach to an analysis for the dynam
stability of plates with an elliptical cutout.

Becker@11# was the first to analyze unsymmetrically laminat
composite plates, infinite in extent, with a crack-shaped cuto
and subjected to far-field in-plane loading by using complex

6,
the
t of
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E

001 by ASME SEPTEMBER 2001, Vol. 68 Õ 731
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tential theory. In his analysis, Becker introduced four independ
complex potentials satisfying the governing equations identica
and used a one-term expansion for each of the four complex
tentials. Later, Becker@12# examined the behavior of simila
plates subjected to far-field transverse shear loads.

The goal of the present study is to develop a method that is
suited for parametric studies and that accurately predicts the s
and displacement fields in initially flat, unsymmetrically lam
nated plates, with finite planform dimensions and an ellipti
cutout. Toward this goal, the present study combines Beck
complex potential analysis with Chen’s variational approach. W
this approach, the total potential energy of the plate is expres
solely as a contour integral, and the need for a boundary collo
tion procedure is eliminated. This approach enables computa
ally efficient solution of boundary value problems for rectangu
and general polygonal plate geometries by simple numerical i
gration of the potential-energy contour integral. Moreover, a m
ping function is used to transform the elliptical cutout boundary
a unit circle in order to further simplify the numerical analysis

In the remainder of the present paper, details of the anal
method are presented and results from this approach are
cussed. First, the boundary value problem is defined. Next,
analysis details and numerical solution procedure are descri
Then, results for a square laminate with an inclined elliptical c
out are presented.

Problem Definition
The general boundary-value problem considered in the pre

study consists of a thin polygonal plate with an elliptical cuto
~Fig. 1!. The elliptical cutout, which can be located anywhe
inside the exterior plate boundary, has a semi-major axis an
semi-minor axis of lengtha andb, respectively. The special case
of a circular cutout and a line-shaped crack are given bya5b and
a50 or b50, respectively. Two coordinate systems whose orig
coincide with the center of the cutout are shown in Fig. 1. T
global structural coordinates are given by~X, Y, Z! and the prin-
cipal coordinates of the elliptical cutout are given by~x, y, z!. The
orientation of the cutout axes is defined with respect to the glo
structural coordinate frame as defined by the angleb.

The unsymmetically laminated plate is assumed to be flat p
to loading, and the exterior edges of the plate are subjected to
external resultant forces and bending moments. The externa
sultant forces include componentstX , tY , andtZ , and the bending
moments include componentsmX andmY . The external resultan
forces and moments are defined with respect to the~X, Y, Z!
global structural coordinates, and their positive-valued directi

Fig. 1 Planform geometry, coordinate systems, and loading
conditions for laminated plate with an inclined elliptical cutout
732 Õ Vol. 68, SEPTEMBER 2001
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are shown in Fig. 1. The global displacement components in
X, Y, and Z-directions are denoted byuX , uY , and uZ , respec-
tively. The unit vector that is normal to the edges of the plate
denoted byn, and its components in theX andY-directions arenX
andnY , respectively. The plate is made ofK specially orthotropic
layers, and each layer has an orientation angle,uk , that is defined
with respect to the globalX- axis ~Fig. 1!. Moreover, each layer
has thicknesstk , elastic moduliEL andET , shear modulusGLT ,
and Poisson’s ratio vLT , whereL andT are the longitudinal~fiber!
and transverse principal material directions of a given ply, resp
tively.

In the derivation of the equations that govern the plate
sponse, it is convenient to formulate the analysis in terms of
principal coordinates of the elliptical cutout,~x, y, z!, because of
the use of mapping functions. In this case, the displacement c
ponents in thex, y, andz-directions areux , uy , anduz , respec-
tively, and (tx ,ty ,tz) and (mx ,my) respectively denote the exter
nal resultant forces and moments in the~x, y, z! coordinates. The
displacement and the traction components that are defined in
cutout coordinate system are related to those defined with res
to the global structural coordinates by the transformation ma
T,

T5F cosb sinb

2sinb cosb
G . (1)

Solution Procedure
The goal of this section is to develop an analytical method

determining the displacements and stresses in unsymmetri
laminated composite plates, with finite dimensions and an elli
cal cutout, that is amenable to numerical solutions. Toward
goal, the principle of stationary potential energy is used in c
junction with complex potentials that satisfy the three plate eq
librium equations identically. With this approach, the potent
energy of a plate is reduced to a contour integral. The comp
potentials are expressed as truncated Laurent series that co
unknown complex constants. The boundary conditions are s
fied in an average sense by requiring the first variation of
potential-energy contour integral to vanish, thus resulting in a s
tem of equations to solve for the unknown constants. The de
of this solution procedure are as follows and are based on
classical theory of laminated plates, which neglects transve
shear deformation.

The total potential energy of a laminated plate that is subjec
to edge loads is expressed as

p5U1V (2)

in which U andV represent the strain energy in the laminate a
the potential energy due to the external edge loads, respecti
The strain energy is expressed as

U5
1

2 EA
sTedA (3)

whereA represents the doubly connected planform area~domain!
of the laminate shown in Fig. 1. The vectorss ande represent the
stress resultants and strain components as

sT5$Nxx ,Nyy ,Nxy ,Mxx ,M yy ,Mxy% (4a)

eT5$ux,x ,uy,y ,ux,y1uy,x ,2uz,xx ,2uz,yy ,22uz,xy% (4b)

where a subscript after a comma denotes differentiation and
functionsux , uy , anduz represent the in-plane and out-of-plan
displacements, respectively, of the plate midplane~Fig. 1!. Based
on classical laminate theory, the in-plane and bending stress
sultants are defined by

$Nxx ,Nyy ,Nxy%5(
k51

K

$sxx
~k! ,syy

~k! ,sxy
~k!%~zk2zk21! (5a)
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$Mxx ,M yy ,Mxy%5
1

2 (
k51

K

$sxx
~k! ,syy

~k!! ,sxy
~k!%~zk

22zk21
2 !

(5b)

in which zk and zk21 define the distance to the top and botto
surfaces of thekth layer with respect to the midplane of th
laminate.

The stress resultant and strain vectorss ande are related to each
other by

s5Ce (6)

whereC, defining the laminate material properties, is compos
of the extensional, membrane-bending coupling, and bend
stiffness matrices,A, B, andD,

C5FA B

B DG . (7)

The expressions for theA, B, andD submatrices can be found i
textbooks~e.g., @13#!. The desired form of the strain energy
obtained by substituting fors ande from Eq. ~4! and then apply-
ing Gauss’ theorem. This action yields

U5
1

2 El
$~Nxxux1Nxyuy!nx1~Nyyuy1Nxyux!ny2~Mxxuz,x

1Mxyuz,y!nx1~M yyuz,y1Mxyuz,x!ny1~Mxx,x1Mxy,y!uznx

1~M yy,y1Mxy,x!uzny%dl2
1

2 EA
$~Nxx,x1Nxy,y!ux1~Nxy,x

1Nyy,y!uy1~Mxx,xx12Mxy,xy1M yy,yy!uz%dA (8)

in which l represents the boundary of the doubly connected p
form areaA. The potential energy,V, arising from the externa
resultant forces and moments acting along the exterior boun
is expressed as

V52E
l
~ txux1tyuy1tzuz2mxuz,x2myuz,y!dl. (9)

In the present study, only the external plate boundary is subje
to external loads. Enforcing the first variation of the total poten
energy,dp, to vanish results in the well-known equilibrium equ
tions of classical plate theory

Nxx,x1Nxy,y50 (10a)

Nxy,x1Nyy,y50 (10b)

Mxx,xx12Mxy,xy1M yy,yy50. (10c)

The next step in the solution procedure is to derive a solution
satisfies these equations identically and reduces the potentia
ergy to a contour integral. As suggested by Becker@11#, the solu-
tion to these coupled equilibrium equations is established by
troducing four linearly independent complex potentials,wk(zk)
with k51, 2, 3, 4. These potentials are functions of the modifi
complex variables,zk , defined by

zk5x1mky with k51,2,3,4 (11)

wherem1 , m2 , m3 , andm4 are complex constants that must b
determined. First, the stress and moment resultants are expr
as linear combinations of these potentials in the form

~Nxx ,Nyy ,Nxy ,Mxx ,M yy ,Mxy!

52 ReF(
k51

4

~ak ,bk ,ck ,dk ,ek , f k!wkG with k51,2,3,4

(12)
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where ak , bk , ck , dk , ek , and f k are unknown complex con
stants. Then, the in-plane displacement components are expre
as linear combinations of complex potentials,Fk(zk), with k
51, 2, 3, 4, in the form

~ux ,uy!52 ReF(
k51

4

~pk ,qk!FkG (13)

where

Fk~zk!5E wk~zk!dzk . (14)

Similarly, the out-of-plane deflection is expressed as

uz52 ReF(
k51

4

Fk~zk!G (15)

where

Fk~zk!5E Fk~zk!dzk . (16)

By substituting from Eqs.~13! and~15! for the displacement com
ponents in Eq.~4b! and using the chain rule for partial differen
tiation, the strain vectore is expressed in terms of the unknow
complex constants as

eT52 ReF(
k51

4

$pk ,mkqk , pkmk1qk ,21,2mk
2,22mk%wkG .

(17)
Then, the unknown coefficientsak , bk , ck , dk , ek , and f k are
expressed in terms of the unknown constantspk , qk , andmk by
substituting Eqs.~12! and ~17! into the constitutive relations, Eq
~6!, as

5
ak

bk

ck

dk

ek

f k

6 53
A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B12 B22 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

4
35

pk

mkqk

pkmk1qk

21
2mk

2

22mk

6 with k51,2,3,4. (18)

Equation~18! is then substituted into Eq.~12! to obtain the stress
and moment resultants in terms of the remaining unknowns,pk ,
qk , andmk . Substituting these expressions for the stress and
ment resultants into the equilibrium equations given by Eq.~10!
results in a system of algebraic equations given by

~A111mkA16!pk1~A121mkA26!qkmk1~A161mkA66!~pkmk1qk!

2~B111mkB16!2~B121mkB26!mk
22~B161mkB26!2mk50

(19a)

~A161mkA12!pk1~A261mkA22!qkmk1~A661mkA26!~pkmk1qk!

2~B161mkB12!2~B261mkB22!mk
22~B661mkB26!2mk50

(19b)

~B1112mkB161mk
2B12!pk1~B1212mkB261mk

2B22!qkmk1~B16

12mkB661mk
2B26!~pkmk1qk!2~D1112mkD161mk

2D12!

2~D1212mkD261mk
2D22!mk

22~D1212mkD66

1mk
2D26!2mk50. (19c)
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These equations are linear inpk andqk but nonlinear inmk . Thus,
considering the first two of these equations permits the solu
for pk andqk in terms ofmk as

pk5

(
i 50

5

Rimk
i

(
i 50

4

Timk
i

, (20a)

qk5

(
i 50

5

Simk
i

(
i 50

4

Timk
i

(20b)

The explicit expressions forRi , Si , andTi are given in the Ap-
pendix. Substituting these expressions forpk andqk into Eq.~19c!
yields the characteristic~polynomial! equation for the generalize
complex variableszk in terms ofmk as

(
i 50

8

Gimk
i 50 (21)

The coefficients of this polynomial are real-valued constants le
ing to distinct roots, and are given in the Appendix. The comp
parametersmk ~k51, 2, 3, 4! and their complex conjugates are th
roots of this characteristic equation, i.e.,m55m̄1 , m65m̄2 , m7
5m̄3 , and m85m̄4 . Determination of these roots leads to th
expressions for the stress and moment resultants that satisf
in-plane and bending equilibrium equations for arbitrary comp
potentials, thus rendering the area integrals in Eq.~8! to vanish
from the expression for the total potential energy,p. Thus, the
boundary value problem has been transformed into a form
involves only a boundary-contour integral and four unkno
complex potential functions,Fk(zk) with k51, 2, 3, 4. The aux-
iliary unknown complex potential functions,wk(zk) and Fk(zk),
are obtained by their differentiation and integration, respective

These analytic functions, related toFk(zk), are assumed in the
series form in terms of mapping functionsjk as

Fk~jk!5(
n51

N

@ankjk
n1bnkjk

2n#. (22)

This form of Fk(jk) results in the potentials forFk(jk) and
wk(jk) as

Fk~jk!5a1kS 1

2
r kjk

22sk lnjkD1b1kS 1

2
skjk

222r k lnjkD
1(

n52

N FankS 1

n11
r kjk

n112
1

n21
skjk

n21D
1bnkS 1

12n
r kjk

2n111
1

n11
skjk

2n21D G (23)

and

wk~jk!5(
n51

N
n

vk8~jk!
@ankjk

n212bnkjk
2n21# (24)

where a prime denotes differentiation with respect tojk . The
functionsvk(jk) are the inverse mapping ofjk .

The mapping functions,jk ~k51, 2, 3, 4!, map an elliptical
cutout in the~x, y!-plane onto unit circles in the four comple
planes that correspond to the complex variables,zk . In this analy-
sis, the mapping functions for an elliptical cutout, introduced
Lekhnitskii @14#, are employed and are given in the form
734 Õ Vol. 68, SEPTEMBER 2001
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jk5
zk6Azk

22a22mk
2b2

a2 imkb
, k51,2,3,4 (25)

in which a andb are the major and minor axes of an ellipse a
i 5A21. The sign of the square root term is chosen so thatujku
>1; that is, the domain of the plate is mapped onto the exterio
the unit circles. Inverting the mapping function providesvk(jk)
as

zk5vk~jk!5r kjk2
sk

jk
(26)

in which

r k5
1

2
~a2 imkb!, (27a)

sk5
1

2
~a1 imkb!. (27b)

The unknown complex coefficientsank andbnk in Eqs.~22!–
~24! are determined by requiring the first variation of the to
potential to vanish, i.e.,dp50. This step yields a system of linea
algebraic equations involving boundary integrals that must
solved numerically to obtainank and bnk for plates with finite
planform geometry.

Numerical Procedure
In this section, the matrix form of the potential-energy conto

integral is derived to facilitate numerical solutions. In order
apply the matrix operations, the following quantities are defin

wnk* 5
njk

n21

vk8~jk!
(28)

Fnk* 5jk
n (29)

Fnk* 55
r k

n11
jk

n112
sk

n21
jk

n21, unu>2

r kjk
2

2
2sk ln jk, n51

r k ln jk1
skjk

22

2
, n521

(30)

such that

Fk5(
n51

N

~ankFnk* 1bnkF2nk* ! (31a)

wk5(
n51

N

~ankwnk* 1bnkw2nk* ! (31b)

Fk5(
n51

N

~ankFnk* 1bnkF2nk* !. (31c)

Considering first the expression forNxx in Eq. ~12! and substitut-
ing from Eq.~31b!, the following term can be rewritten as

(
k51

4

akwk5$~1!Nxx*
Ta11 ~21!Nxx*

Tb11 . . . . . . ..1 ~N!Nxx*
TaN

1 ~2N!Nxx*
TbN% (32)

where

~n!Nxx*
T5$a1wn1* ,a2wn2* ,a3wn3* ,a4wn4* % (33)

an
T5$an1 ,an2 ,an3 ,an4% (34a)

bn
T5$bn1 ,bn2 ,bn3 ,bn4% (34b)
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and the superscriptT denotes matrix transposition. The same te
can be rewritten as

(
k51

4

akwk5Nxx*
Tq (35)

in which the vectorsNxx* andq are formed as

Nxx*
T5$~1!Nxx*

T , ~21!Nxx*
T , ~2!Nxx*

T , ~22!Nxx*
T , . . . . . . ,

~N!Nxx*
T , ~2N!Nxx*

T% (36)

qT5$a1
T ,b1

T ,a2
T,b2

T,¯, aN
T ,bN

T%. (37)

With these equations, the stress resultantNxx takes its final form
as

Nxx52 Re$Nxx*
Tq% (38a)

or

Nxx5Nxx*
Tq1N̄xx*

Tq̄ (38b)

or

Nxx5N̂xx
T q̂ (39)

where the vectorsN̂xx and q̂ are defined as

N̂xx
T 5$Nxx*

T ,N̄xx*
T% (40)

and

q̂T5$qT,q̄T% (41)

in which the overbars denote complex conjugation. The remain
stress resultants and displacement components can be obtain
replacing the symbolNxx with the appropriate one in Eq.~39! and
by using one of the following corresponding expressions:

~n!Nyy* T5$b1wn1* ,b2wn2* ,b3wn3* ,b4wn4* % (42a)

~n!Nxy*
T5$c1wn1* ,c2wn2* ,c3wn3* ,c4wn4* % (42b)

~n!M xx*
T5$d1wn1* ,d2wn2* ,d3wn3* ,d4wn4* % (42c)

~n!M yy* T5$e1wn1* ,e2wn2* ,e3wn3* ,e4wn4* % (42d)

~n!M xy*
T5$ f 1wn1* , f 2wn2* , f 3wn3* , f 4wn4* % (42e)

~n!ux*
T5$p1Fn1* ,p2Fn2* ,p3Fn3* ,p4Fn4* % (42f)

~n!uy*
T5$q1Fn1* ,q2Fn2* ,q3Fn3* ,q4Fn4* % (42g)

~n!uz*
T5$Fn1* ,Fn2* ,Fn3* ,Fn4* %. (42h)

The termsMxx,x , Mxy,x , Mxy,y , M yy,y , uz,x , anduz,y that appear
in the potential-energy contour integral are obtained by replac
the symbolNxx with the appropriate one in Eq.~39! and by using
one of the following corresponding expressions:

~n!M xx,x* T 5H d1

v18
wn18* ,

d2

v28
wn28* ,

d3

v38
wn38* ,

d4

v48
wn48* J (43a)

~n!M xy,x* T 5H f 1

v18
wn18* ,

f 2

v28
wn28* ,

f 3

v38
wn38* ,

f 4

v48
wn48* J (43b)

~n!M xy,y* T 5H f 1m1

v18
wn18* ,

f 2m2

v28
wn28* ,

f 3m3

v38
wn38* ,

f 4m4

v48
wn48* J

(43c)

~n!M yy,y* T 5H e1m1

v18
wn18* ,

e2m2

v28
wn28* ,

e3m3

v38
wn38* ,

e4m4

v48
wn48* J

(43d)

~n!uz,x* T5$Fn1* ,Fn2* ,Fn3* ,Fn4* % (43e)
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~n!uz,y* T5$m1Fn1* ,m2Fn2* ,m3Fn3* ,m4Fn4* % (43f)

in which prime denotes differentiation with respect to its arg
ment. By using Eq.~39! and the analogous expressions for t
other stress resultants and displacement components,
potential-energy contour integral is expressed as

p5q̂TH 1

2 R
l
ŜQ̂TdlJ q̂2q̂T R

l
Q̂pdl (44)

whereŜ andQ̂ are matrices andp is a vector given by

Ŝ5@~N̂xxnx1N̂xyny!~N̂xynx1N̂yyny!~M̂ xx,xnx1M̂ xy,ynx

1M̂ xy,xny1M̂ yy,yny!~2M̂ xxnx2M̂ xyny!~2M̂ xynx2M̂ yyny!#

(45a)

Q̂5@ ûx ûy ûz 2ûz,x 2ûz,y# (45b)

pT5$txx ,tyy ,tzz,mxx ,myy%. (45c)

Requiring the first variation of the total potential to vanish pr
vides the equilibrium equations in the form

Kq̂5F (46)

in which q̂ involves only the unknown coefficientsank and bnk
and their complex conjugates. The known coefficient matrixK
and forcing vectorF in Eq. ~46! are given by

K5
1

2 R
l
~ŜQ̂T1Q̂ŜT!dl (47a)

F5 R
l
Q̂pdl. (47b)

Also, a constraint equation

ReF(
k51

4
mkpk2qk

a2 imkb
a1kG50 (48)

is used to eliminate the rigid-body motion of the plate from E
~46! by requiring the constant term in the rotation field, given

V5ux,y2uy,x (49)

to vanish. In addition, the two constraint equations

ImH(
k51

4

ska1kJ 50, (50a)

ImH(
k51

4

r kb1kJ 50 (50b)

are used to ensure the single-valuedness of the logarithmic te
in Eq. ~23! that result in single-valuedness of the out-of-pla
displacement field.

These three constraint equations are directly invoked into
governing equations by using Lagrange multipliers. The rema
ing step needed to solve Eq.~46! is to compute the contour inte
grals, which include the exterior plate boundary and the inte
cutout boundary, in Eqs.~47!. In the present study, the contou
integrals are evaluated by using a trapezoidal rule of the form

E
0

L

f @x~ l !,y~ l !#dl5
L

2 E21

1

f @x~h!,y~h!#dh

>
L

2 (
k50

K

Hkf @x~hk!,y~hk!# (51)

where
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L5E dl, h5
2l

L
21

Hk5H 1

2
for k50 and K

1 for 2,k,K

, hk5
2k

K
21, (52)

with K denoting the number of intervals on the contourl. In this
equation,x(h) andy(h) are the parametric equations of the co
tour l in which 21,h,1. The functionf is arbitrary in that it
represents symbolically the integrand of any integral used in
construction of Eq.~47!.

Numerical Results
Results are presented in this section for a square@645 deg#

unsymmetrically laminated plate (W5L54 inches) that is sub-
jected to a biaxial load ofs051 lb/in. and that has a relatively
small centrally located elliptical cutout~Fig. 2!. The elliptical cut-
out is inclined at an angle ofb545 deg and has a semi-majo
axis, a50.5 inch, and semi-minor axis,b50.2 inch. These di-
mensions correspond to a cutout aspect ratiob/a50.4, a semi-
major axis-to-plate-width ratioa/W50.125, and a plate width-to
thickness ratioL/h5400. Each layer of the two-layer plate
0.005 inch thick and is specially orthotropic with material pro
erties EL5193106 psi, ET51.93106 psi, GLT50.93106 psi,
and nLT50.3. The total plate thickness is given byh
50.01 inch.

The roots of the characteristic equation, Eq.~21!, for this prob-
lem were determined to bem1520.5486710.83604i , m2
53.38364i , m350.29554i , m450.5486710.83604i , m55m̄1 ,
m65m̄2 , m75m̄3 , andm85m̄4 . The deformed shape of the lam
nate is shown in Fig. 3 and is essentially a saddle-like sh
because of the bending-stretching coupling. Contour plots of
nondimensional in-plane shear stress resultant,Nxy /s0, and the
nondimensional twisting stress resultant,Mxy /(s0h), defined in
terms of the global coordinate system~Fig. 1! are shown in Figs.
4 and 5, respectively. These results indicate a central poin
inversion symmetry~polar symmetry! at the origin and concentra

Fig. 2 Rectangular plate with an inclined elliptical cutout and
subjected to biaxial tension
736 Õ Vol. 68, SEPTEMBER 2001
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tions in the stress resultants atu50 deg and 180 deg. The maxi
mum values ofNxy /s0 and Mxy /(s0h) are 24.96 and .74,
respectively.

‘The fidelity of the present method for this particular set
problem parameters is illustrated in Fig. 6 by a plot of the out-
plane displacement at the cutout edge versus the angleu. In par-
ticular, five curves are shown in the figure that correspond
values ofN51, 3, 5, 10, and 15, in whichN is the number of
terms in the Laurent series defined by Eq.~31!. The values ofN
51, 3, 5, 10, and 15, correspond to the 16, 48, 80, 160, and
equations that are used to obtain solutions to Eq.~46!. An addi-
tional curve is shown that corresponds to results that were

Fig. 3 Deformed geometry of a square †Á45 deg ‡ laminated
plate with an elliptical cutout inclined at 45 deg and subjected
to biaxial tension

Fig. 4 Nondimensional in-plane shear stress resultant distri-
bution in a square †Á45 deg ‡ laminated plate with an elliptical
cutout inclined at 45 deg and subjected to biaxial tension
Transactions of the ASME
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tained by the finite element analysis. The finite element model
one quarter of the plate had 3150 elements with 1656 nodes
sulting in 9720 degrees-of-freedom. Comparison of the cur
shown in Fig. 6, which are coincident, indicates remarkable ag
ment, even forN51.

Results are also presented in Table 1 that give the stress re
antsNxx and Mxx at the edge of the cutout and atu590 deg.
Similarly, results are presented in Table 2 that giveNyy andM yy at
the edge of the cutout and atu50 deg. In both of these tables
the stress resultants are referred to the local~x, y! coordinate sys-
tem ~Fig. 2! and results are given that were obtained from a fin
element analysis and from the present analysis withN51, 3, 5,
10, and 15 in Eq.~31!. The finite element solutions were obtaine
by using a constant-strain, shear deformable shell element

Fig. 5 Nondimensional twisting stress resultant distribution in
a square †Á45 deg ‡ laminated plate with an elliptical cutout in-
clined at 45 deg and subjected to biaxial tension

Fig. 6 Nondimensional out-of-plane displacement around the
edge of an elliptical cutout inclined at 45 deg and subjected to
biaxial tension
Journal of Applied Mechanics
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scribed by Barut et al.@15#. The results in Table 1 indicate differ
ences of less than five percent forNxx and 18 percent forMxx , for
N51. For N>5, all differences are less than 1.5 percent forNyy
and 2 percent forM yy . This good agreement with the shea
deformable finite element results at these two plate locations
the fact that the present method is based on classical plate th
suggest that transverse shear deformations are negligible, a
pected, for a very thin plate (L/h5400).

Results are presented in Figs. 7 and 8 that show the nondim
sional out-of-plane displacementw/h and the nondimensiona
bending moment resultantM uu /(s0h), respectively, along the
edge of the cutout. For these results, all the problem parame
are identical to those described in the beginning of this sec
except for the cutout inclination angleb. Seven curves are show
in Figs. 7 and 8 that correspond to values ofb5245 deg,230
deg,215 deg, 0 deg, 15 deg, 30 deg, and 45 deg. Location aro
the edge of the cutout is indicated by values of the angleu ~Fig.
2!.

The results in Fig. 7 for the out-of-plane displacement fie
show a family of oscillatory curves that exhibit a phase shift a
growth in amplitude as the cutout inclination angleb deviates
from 0 deg. The maximum amplitude of the displacement alo
the cutout is predicted forb5645 deg. Each of these curve
exhibits two upward peaks and two downward peaks that s
farther away fromu545 deg as the magnitude of the cutout i
clination angle increases.

The results in Fig. 8 for the bending stress resultant also sh
a family of oscillatory curves that exhibit a growth in amplitude
the cutout inclination angleb deviates from 0 deg. Consisten
with the results for the out-of-plane displacements, the result
Fig. 8 also show the maximum amplitude forb5645 deg. Fur-
thermore, the results in Fig. 8 also show that the curves fob
Þ0 deg have two positive and two negative peak values
generally have different magnitudes. In contrast, the curve fob
50 deg has two positive and two negative peak values that h
the same magnitude.

Conclusions
A solution method for the analysis of unsymmetrically lam

nated plates with finite planform geometry and with an elliptic
cutout has been presented. This method uses complex pote

Table 1 Comparison of stress resultants at the cutout edge
given by uÄ90 deg for a square †Á45 deg ‡ laminated plate with
an elliptical cutout inclined at 45 deg and subjected to biaxial
tension

Nxx ~lb/in.! Mxx ~lb-in./in.!

N51 1.3875 0.0117
N53 1.3330 0.0106
N55 1.3050 0.0100
N510 1.3060 0.0100
N515 1.3058 0.0100
FEM 1.3276 0.0099

Table 2 Comparison of stress resultants at the cutout edge
given by uÄ0 deg for a square †Á45 deg ‡ laminated plate with
an elliptical cutout inclined at 45 deg and subjected to biaxial
tension

Nyy ~lb/in.! M yy ~lb-in./in.!

N51 10.0342 20.0144
N53 10.2424 20.0148
N55 10.3622 20.0150
N510 10.3723 20.0150
N515 10.3808 20.0150
FEM 10.2400 20.0150
SEPTEMBER 2001, Vol. 68 Õ 737
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Fig. 7 Effect of elliptical cutout inclination on the nondimen-
sional out-of-plane displacement around the edge of the cutout
for a square †Á45 deg ‡ laminated plate subjected to biaxial ten-
sion

Fig. 8 Effect of elliptical cutout inclination on the nondimen-
sional bending stress resultant around the edge of the cutout
for a square †Á45 deg ‡ laminated plate subjected to biaxial ten-
sion
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and their Laurent series expansions to reduce the potential en
of a plate to a contour integral that is evaluated numerically by
trapezoidal rule. In addition, the variational statement of equi
rium is applied to the potential energy to obtain a linear system
equations in terms of the unknown coefficients of the Laur
series. Solution of these equations yields the stress and disp
ment fields for a given problem. This approach represents a c
putationally efficient alternative to boundary collocation proc
dures that are typically used to solve problems of the ty
presented herein.

Results have been presented for a square two-layer uns
metrically laminated plate that is subjected to biaxial tension
the edges and that has a relatively small, inclined central ellipt
cutout. The results were compared to corresponding results
tained from finite element analysis and show excellent agreem
The results also show that the amount of cutout inclination affe
greatly the out-of-plane displacements and bending stress re
ant at the cutout boundary.

Appendix
In Eq. ~19!, the constant coefficientsRk , Sk , andTk are defined

as

R05A66B112A16B16

R152A66B1612A26B112A16B1222A16B662A12B16

R25A22B1115A26B1623A16B262A12B1222A12B66

R3522A66B261A26B1212A26B6613A22B162A16B2223A12B26

R452A26B261A22B1212A22B662A12B222A66B22

R55A22B262A26B22

S05A11B162A16B11

S15A11B1212A11B662A16B162A12B112A66B11

S253A11B261A16B1212A16B6622A66B1623A12B162A26B11

S35A11B2215A16B262A12B1222A12B6623A26B16

S452A16B2212A66B262A12B262A26B1222A26B66

S55A66B222A26B26

T05A11A662A16
2

T152A11A2622A12A16

T252A16A261A11A222A12
2 22A12A66

T352A16A2222A12A26

T45A22A662A26
2 .

The coefficientsGk of the characteristic equation given in Eq
~20! are defined in the form

G05S5B221R5B262T4D22

G15R5B121S4B221R4B2613S5B2612R5B662T3D2224S4D26

G25R4B121S5B1213R5B161S3B221R3B2613S4B2612R4B66

12S5B6622T4D122T2D2224T3D2624T4D66

G35R5B111R3B121S4B1213R4B161S5B161S2B221R2B26

13S3B2612R3B6612S4B6622T3D1224T4D162T1D22

24T2D2624T3D66

G45R4B111R2B121S3B1213R3B161S4B161S1B221R1B26

13S2B2612R2B6612S3B662T4D1122T2D1224T3D16

2T0D2224T1D2624T2D66
Transactions of the ASME
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G55R3B111R1B121S2B1213R2B161S3B161S0B221R0B26

13S1B2612R1B6612S2B662T3D1122T1D1224T2D16

24T0D2624T1D66

G65R2B111R0B121S1B1213R1B161S2B1613S0B2612R0B66

12S1B662T2D1122T0D1224T1D1624T0D66

G75R1B111S0B1213R0B161S1B1612S0B662T1D1124T0D16

G85R0B111S0B162T0D11.
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Asymptotic Solutions of
Penny-Shaped Inhomogeneities
in Global Eshelby’s Tensor
In this paper, a three-dimensional penny-shaped isotropic inhomogeneity surround
unbounded isotropic matrix in a uniform stress field is studied based on Eshelby’s eq
lent inclusion method. The solution including the deduced equivalent eigenstrain an
asymptotic expressions is presented in tensorial form. The so-called energy-based e
lent inclusion method is introduced to remove the singularities of the size and eigen
of the Eshelby’s equivalent inclusion of the penny-shaped inhomogeneity, and yie
same energy disturbance. The size of the energy-based equivalent inclusion can b
as a generic damage measurement.@DOI: 10.1115/1.1380676#
c

,

t

h
n
e

a

s

the
nd

the

en-
nta-
pe-
d in
s a

atio
,
l
gen-
icitly

oge-

sion
eo-
ce
ed

eity
the
-

u-

y-
is of
rain
y’s

8

e
w
M

1 Introduction
In this paper, a three-dimensional penny-shaped isotropic in

mogeneity surrounded by unbounded isotropic matrix in a u
form stress field is studied based on Eshelby’s equivalent in
sion method~@1#!. The penny-shaped inhomogeneity is treated
the limit of a spheroidal shape inhomogeneity. An ellipsoid
shape inhomogeneity, as shown in Fig. 1, in a uniform stress fi
is a classic problem~@1,2#! briefed in the Appendix. In particular
in plane elasticity, the penny-shaped inhomogeneities are stu
by Hurtado et al.@3#, and asymptotic solutions for lamellar inho
mogeneities of arbitrary shape have been obtained by Homent
schi and Dascalu@4#.

The Eshelby’s tensor is usually defined by each component
certain local coordinate system, see, e.g., Eq. (A7) in Appendix A,
and so is the solution based on Eshelby’s equivalent inclus
method. Even in the well-chosen local coordinate system, the
lutions are very complicated; see, e.g., the work of Hurtado e
@3#, Zhao and Weng@5#, Shafiro and Kachanov@6#, let alone in the
global coordinate system. It is hard to see the influence of Es
by’s tensor as an entity from such solutions. If we are mai
concerned about the macroscopic responses of inhomogen
rather than their local stress fields in detail, e.g., damage mo
ing, such solutions are generally too complicated to be used.

A typical microstructure-based damage variable is the cr
tensor; see, e.g., Kachanov@7#, Swoboda and Yang@8,9#, and
Yang et al.@10#. For a solid of sizeV0 weakened byn cracks, the
crack tensor takes the form

V5
1

V0 (
k51

n

ak
3nknk (1)

whereak andnk are the radius and normal vector of thekth crack.
Equation~1! shows that only few characteristic geometric quan
ties are incorporated into the definition of the damage ten
Based on such a definition, any crack of arbitrary shape can

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 1
2000; final revision, Jan. 8, 2001. Associate Editor: D. Kouris. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
740 Õ Vol. 68, SEPTEMBER 2001 Copyright
ho-
ni-
lu-
as
al
eld

died
-
cov-

in a

ion
so-
al.

el-
ly
ities

del-

ck

ti-
or.
be

replaced with an equivalent penny-shaped crack. Evidently,
crack tensor is just the generalized form of the Budiansky a
O’Connell’s damage parameter~@11#!

v5
1

V0 (
k51

n

ak
3 (2)

which is associated with the energy disturbance caused by
presence of the cracks; see, e.g., Eq.~85!. In this paper, we focus
on the penny-shaped inhomogeneities and the corresponding
ergy disturbances, and in particular their macroscopic represe
tion. Note that the penny-shaped crack or anticrack is just a s
cial case of the penny-shaped inhomogeneity, as discusse
Section 4. Thus, the penny-shaped inhomogeneity furnishe
much more general microdefect model.

In this paper, asymptotic developments for small thickness r
j is used to the Eshelby’s tensorS of spheroidal inclusions, i.e.
S5S1Mj1O(j2). The tensorS andM are expressed in globa
coordinate systems. Furthermore, the Eshelby’s equivalent ei
strains of penny-shaped inhomogeneities are expressed expl
by S, S, andM as tensorial entities.

The energy disturbance caused by a penny-shaped inhom
neity is U* 5V/2s0:«* wheres0 is the farfield stress;V and«*
are the size and eigenstrain of the Eshelby’s equivalent inclu
of the inhomogeneity, respectively. The inhomogeneity is g
metrically identical to its Eshelby’s equivalent inclusion. Sin
V→0 due toj→0, for a macroscopically sensible penny-shap
inhomogeneity, the equivalent eigenstrain«* should be singular,
otherwise its energy disturbance is trivial and the inhomogen
is macroscopically insensible. The asymptotic expressions of
singular equivalent eigenstrain«* have been obtained in this pa
per, and the singular factorsh contained in the singular«* have
been identified.

If moving the singular factorh from «* to V, the equivalent
size is Veq5Vh and the equivalent eigenstrain is«eq* 5«* /h.
Both the equivalent sizeVeq and eigenstrain«eq* are finite quanti-
ties, and the energy disturbance can be rewritten asU*
5Veq/2s0:«eq* . In Section 3.2, the so-calledenergy-based inclu-
sion methodis proposed. Unlike the Eshelby’s equivalent incl
sion V, the energy-based inclusionVeq may be geometrically
different with the corresponding inhomogeneity. For a penn
shaped inhomogeneity, the energy-based equivalent inclusion
the sizeVeq and prescribed by the energy-based equivalent st
«eq* . The energy-based equivalent inclusion and the Eshelb

,
the
nt of
ill
E
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equivalent inclusion~prescribed by«* ! cause different local stres
fields but the same energy disturbance. It is pointed out in Sec
8 that the sizeVeq of the energy-based equivalent inclusion fu
nishes a generic damage measurement for different inhomog
ities.

2 Global Eshelby’s Tensor
The Eshelby’s tensor of a spheroidal inclusion (a15a25a)

takes the formSi jkl 5Si jkl (n,j) wherej5a3 /a as defined in Eqs.
(A3), (A4), and (A5) in Appendix A, and is denoted symbol
cally asS. For small thickness ratioj, theS tensor can be ex-
panded into power series with respect toj aboutj50

S5S~n,j!5Suj501
]S
]j U

j50

j1O~j2!5S1Mj1O~j2!

(3)

where

S5Suj50 , M5
]S
]y U

j50

. (4)

The asymptotic expression

S→S1Mj (5)

is a good approximation of theS tensor for j→0 or penny-
shaped inclusions.

2.1 Properties of the Global S Tensor. Obviously, theS
tensor is just the limit of the Eshelby’s tensor defined in Eq.~A8!.
Now we transform theS tensor from the local coordinate syste
to a global coordinate system. Consider a local coordinate sys
x18x28x38 in the global coordinate systemx1x2x3 as shown in Fig.
2. The direction cosines of axesx18 ,x28 ,x38 in global system are
ni

(1) , ni
(2) , and ni

(3) , respectively, and the principal axes of
penny-shaped ellipsoidal inclusion coincide with the ax
x18 ,x28 ,x38 , as shown in Fig. 2. If the components of the Esh
by’s tensor in the local coordinate system isSi jkl8 , its components
in the global coordinate systemSi jkl can be determined by th
transformation

Si jkl 5ni
~m!nj

~n!nk
~p!nl

~q!Smnpq8 . (6)

Note thatni
(1)nj

(1)1ni
(2)nj

(2)1ni
(3)nj

(3)5d i j and set

ni
~3!5ni5n. (7)

Then theS tensor defined by Eq.~A8! in Appendix A can be
expressed in the global coordinate system

S5Si jkl 5
1

2
~d iknjnl1d i l njnk1d jkninl1d j l nink24ninjnknl !

1
n

12n
ninj~dkl2nknl !1ninjnknl (8)

Fig. 1 „a… Inclusion or inhomogeneity V; „b… an ellipsoidal in-
clusion with principal half-axes a1 , a2 , and a3
Journal of Applied Mechanics
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see also Yang@12#. Evidently, Si jkl reduces to Eq.~A8! if ni
5$0,0,1%. Equation~8! implies thatS5S(n,n). This is a very
special property since in general,S5S@n,n,n(1),n(2)#. Here, we
introduce the identity tensors of rank four and two

I5I i jkl 5
1

2
~d ikd j l 1d i l d jk!, l5 l i j 5d i j , (9)

and theN andT tensors

N5nnnn, T5Ti jkl 5
1

4
~ninkd j l 1ninld jk1njnkd i l 1njnld ik

24ninjnknl !. (10)

TheN andT tensors are associated with the normal componens
and shear componentt of the stress tensors in the direction ofn,
i.e.,

s25s:N:s, t25s:T:s. (11)

Then theS tensor can be expressed in terms of theN and T
tensors

S52T1
n

12n
nnl1

122n

12n
N. (12)

The transpose ofSi jkl for ij andkl is denotedST5Si jkl
T 5Skli j ,

ST52T1
n

12n
lnn1

122n

12n
N. (13)

The S tensor has some interesting properties, e.g.,

Si jmnSmnkl5Si jkl or S:S5S, (14)

and

~S2I !•n50. (15)

An important theorem is

~ I2uS!215I1
u

12u
S (16)

for uÞ1, since

~ I2uS!:S I1
u

12u
SD[S I1

u

12u
SD :~ I2uS![I (17)

exceptu51. TheS tensor can be split into two parts:

Fig. 2 Global and local coordinate system
SEPTEMBER 2001, Vol. 68 Õ 741
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S5Sn1St , Sn5
n

12n
nnl1

122n

12n
N, St52T. (18)

It is easy to verify

Sn :St5St :Sn50, Sn :Sn5Sn , St :St5St . (19)

Split theSn tensor into the unsymmetric and symmetric parts

Sn5Sn
uns1Sn

sym, Sn
uns5

n

12n
nnl, Sn

sym5
122n

12n
nnnn.

(20)

Then, the following relations can be verified

St :C5
1

2m
St , Sn :C5

1

2m
Sn

sym (21)

whereC andm are the elastic compliance tensor and shear mo
lus, respectively,

C52
n

E
ll1

11n

E
I , m5

E

2~11n!
(22)

whereE is the Young’s modulus. It is easy to verify

C* 5S:C5C:ST5
1

m F 122n

2~12n!
N1TG . (23)

Therefore,

C21:S:C5ST. (24)

2.2 Properties of the GlobalM Tensor. Obviously, the
tensorS1M:j is just the Eshelby’s tensor forj!1, as defined by
Eq. (A7) in the local coordinate system. TheM can be split into
two parts

M5M̃1M , M̃5M̃ @n,n~1!,n~2!#, M5M ~n,n!. (25)

In view of the Eq. (A7), theM̃ tensor can be defined in the loc
coordinate system

M̃11115M̃22225
1328n

4
g, M̃11225M̃22115

8n21

4
g,

(26)

M̃12125
728n

4
g, g5

p

8~12n!
.

All other nonzero components are obtained by the cyclic perm
tation of ~1, 2, 3!. Similarly, theM tensor is

M13135M23235~n22!g, M333352~2n21!g,
(27)

M33115M332252~4n11!g, M11335M22335~2n21!g.

All other nonzero components are obtained by the cyclic perm
tation of ~1, 2, 3!. Using Eq.~6!, the globalM̃ tensor is obtained

M̃5
1328n

4
g@n~1!n~1!n~1!n~1!1n~2!n~2!n~2!n~2!#

1
8n21

4
g@n~1!n~1!n~2!n~2!1n~2!n~2!n~1!n~1!#

1
728n

4
g@n~1!n~2!n~1!n~2!1n~2!n~1!n~1!n~2!

1n~2!n~1!n~2!n~1!1n~1!n~2!n~2!n~1!# (28)

and the globalM tensor is
742 Õ Vol. 68, SEPTEMBER 2001
du-

l

u-

u-

M5Mi jkl 5~n22!g~d iknjnl1d i l njnk1d jkninl1d j l nink

24ninjnknl !2~4n11!gninj~dkl2nknl !

1~2n21!gnknl~d i j 2ninj !12~2n21!gninjnknl

(29)

or

M54~n22!gT2~4n11!gnnl2~122n!g lnn16ngN.
(30)

It is easy to verify

M̃ :S50⇒S:M̃ :S50⇒S:M:S5S:M :S (31)

and

S:M54~n22!gT2~4n11!gnnl1
7n24n221

12n
gN

(32)

S:M :S522gF ~22n!St1
122n

12n
SnG .

3 Equivalent Eigenstrain of Inhomogeneities
Equation~B4! in Appendix B could be rearranged as

@Di jmn
0 2~Di jkl

0 2Di jkl* !Sklmn#«mn* 5~Di jkl
0 2Di jkl* !«kl

0 (33)

whereSklmn represents the general Eshelby’s tensor of ellipsoi
inclusions, and

Di jkl
0 5D05l0II 12m0I ,

l05
n0E0

~11n0!~122n0!
, m05

E0

2~11n0!
(34)

and Di jkl* 5D* possesses the same form with the parame
E* ,n* . If assumingn05n* , then

D* 5~12u!D0, u512
E*

E0 . (35)

Thus Eq.~33! can be simplified as

~ I2uS!:«* 5u«0⇒«* 5u~ I2uS!21:«0. (36)

An asymptotic expression of the inverse tensor is

~ I2uS!21→B211uB21:~S2S!:B21 if j→0 (37)

where

B5I2uS, B215~ I2uS!215I1
u

12u
S (38)

due to Eq.~16!. Note that, with the asymptotic expression Eq.~5!
for j→0,

~ I2uS!:@B211uB21:~S2S!:B21#

→~B2uMj!:@B211uB21:M:B21j#

5I2u2M:B21:M:B21j2→I . (39)

Thus, Eq.~37! is proved or with an equivalent form

~ I2uS!215B211uB21:~S2S!:B211O~j2!. (40)

Then, the eigenstrain is obtained by Eq.~36!,

«* 5u~ I2uS!21:«05uB21:«01u2B21:~S2S!:B21:«0j

1O~j2!. (41)

According to Eq.~B5! of the Appendix, the energy disturbanc
caused by the existence of the penny-shaped inhomogeneity

U* 5
1

2 EV
s0:«* dD5

V

2
s0:«* (42)
Transactions of the ASME
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since «* is uniform in domainV, where V is the size of the
spheroidal inhomogeneity

V5
4p

3
a1a2a35

4p

3
a3

a3

a
5

4p

3
a3j. (43)

Therefore, the energy disturbance is obtained,

U* 5
2p

3
a3s0:«* j. (44)

Evidently, the equivalent eigenstrain«* should be singular or in-
finitely large, otherwiseU* →0 which implies that the penny
shaped inhomogeneity is insensible at macroscopic level. In o
to make«* singular, obviously, the only possibility is that th
relative Young’s modulusG is infinitesimal or infinitely large, i.e.,

G5
E*

E0 →0 or G5
E*

E0 →`. (45)

3.1 Asymptotic Eigenstrain «* for Infinitesimal G. Note
that 12u5G, and if G→0, due to Eq.~38!,

u→1, B21→ 1

G
S. (46)

In view of Eqs.~37! and ~39!, the asymptotic expression of th
inverse tensor is

~ I2uS!21→ 1

G FS1
1

G
S:~S2S!:SG (47)

with the error

u2M:B21:M:B21j2→M:S:M:SS j

G D 2

5M :S:M :Sjeq
2

(48)

due to Eq.~31!. In order to make the error sufficient small, it
required that the equivalent thickness ratiojeq should be sufficient
small, i.e.,

jeq5
j

G
!1. (49)

Note that

1

G
@S~j!2S#→ 1

G
Mj5Mjeq→S~jeq!2S. (50)

Then, Eq.~47! can be rewritten as

@ I2uS~j!#21→ 1

G
$S1S:@S~jeq!2S#:S%5

1

G
S:S~jeq!:S.

(51)

In view of Eq. ~36!, the equivalent eigenstrain is obtained,

«* 5u~ I2uS!21:«0→~ I2uS!21:«0→ 1

G
S:S~jeq!:S:«0.

(52)

3.2 Energy-Based Equivalent Inclusion Method. For the
penny-shaped inhomogeneity withG→0, its Eshelby’s equivalen
eigenstrain«* contains a singular factorh, as shown in Eq.~52!,

h5
1

G
. (53)

The singular factorh ensures a finite energy disturbanceU* . The
energy disturbance is obtained by Eqs.~42! and ~43!,

U* 5
V

2
s0:«* 5

2p

3
a3jeqS:S~jeq!:S:«0 (54)

or in an equivalent form
Journal of Applied Mechanics
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U* 5
Veq

2
s0:«eq* , Veq5hV5

4p

3
a3jeq ,

«eq* 5
1

h
«* 5S:S~jeq!:S:«0. (55)

Both equations show that the energy disturbance of the pen
shaped inhomogeneity can be evaluated by introducing an in
sion prescribed by an fictitious eigenstrain. However, the Esh
by’s equivalent inclusion method, corresponding to Eq.~54!, is
based on the inclusionV which is geometrically identical to the
inhomogeneity, as shown in Fig. 3~a!. On the other hand, Eq.~55!
represents a new approach, theenergy-based equivalent inclusio
method. The method yields the same energy disturbance but
inclusion Veq is geometrically different with the inhomogeneity
as shown in Fig. 3~b!. Especially, due tojeq!1, the energy-based
equivalent inclusion, is still penny-shaped and its spheroidal p
cipal half-axes areaeq5a anda3

eq5ajeq5jeq /ja3 , as shown in
Fig. 3~b!. Thus, the energy-based equivalent inclusionVeq is
much thicker than the Eshelby’s equivalent inclusionV.

The two methods are equivalent in the sense,

U* 5
V

2
s0:«* 5

Veq

2
s0:«eq* ⇒V«* 5Veq«eq* (56)

which shows thatVeq and«eq* are one pair of conjugate variables
Although Veq and «eq* may have infinite combinations based o
Eq. ~56!, it is required that theVeq and«eq* are obtained fromV
and«* by moving the singular factor from«* to V, as shown in
Eq. ~55!. That bothVeq and«eq* are finite quantities, is one of the
essential ingredients of the energy-based equivalent inclus
method.

Note thatjeq!1⇒S(jeq)'S. Then,

«eq* 5S:S~jeq!:S:«0'S:S:S:«05S:«0. (57)

Note that

«05C0:s0, C052
n0

E0 ll1
11n0

E0 I . (58)

In the finite domainVeq, the energy-based equivalent density
the energy disturbance is defined as

ueq5
U*

Veq5
1

2
s0:«eq* '

1

2
s0:S:C0:s05

1

2
s0:C* :s0 (59)

whereC* is the equivalent elastic compliance, due to Eq.~23!,

C* 5S:C05
1

m0 F 122n0

2~12n0!
N1TG . (60)

Obviously, C* possesses the same symmetry asC0, i.e., Ci jkl*
5Cjikl* 5Ci jlk* 5Ckli j* : and is a positive definite tensor since

ueq'
1

2
s0:C* :s05

1

m0 F 122n0

2~12n0!
s0

21t0
2G>0 (61)

Fig. 3 „a… The Eshelby’s equivalent inclusion V of the penny-
shaped inhomogeneity; „b… the energy-based equivalent inclu-
sion Veq of the same inhomogeneity
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wheres0 and t0 are the normal and shear components, resp
tively, of the stress tensors0 on the plane of the penny-shape
inhomogeneity,s0

25s0:N:s0 and t0
25s0:T:s0: see, e.g., Eq.

~11!.

3.3 Asymptotic Eigenstrain «* for Infinitely Large G.
Note thatu512G, and if G→`,

u→2G→2`, B21→I2S. (62)

In view of Eqs.~37! and ~39!, the asymptotic expression of th
inverse tensor is

~ I2uS!21→I2S2G~ I2S!:~S2S!:~ I2S! (63)

with the error

u2M:B21:M:B21j2→M:~ I2S!:M:~ I2S!~Gj!2

5M:~ I2S!:M:~ I2S!jeq
2 . (64)

In order to make the error sufficient small, it is required that
equivalent aspect ratiojeq should be sufficient small, i.e.,

jeq5Gj!1. (65)

Note that

G@S~j!2S#→GMj5Mjeq→S~jeq!2S. (66)

Then, Eq.~63! can be rewritten as

@ I2uS~j!#21→I2S1~ I2S!:@S~jeq!2S#:~ I2S!

5I2S1~ I2S!:S~jeq!:~ I2S!. (67)

In view of Eq. ~36!, the equivalent eigenstrain is obtained,

«* 5u~ I2uS!21:«0→2G@ I2S1~ I2S!:S~jeq!:~ I2S!#:«0.
(68)

The eigenstrain contains the singular factorG which ensures a
finite energy disturbanceU* . Similarly, the energy disturbanc
takes the form

U* 5
V

2
s0:«* 5

Veq

2
s0:«eq* (69)

where

h5G, (70a)

Veq5
4p

3
a3jeq , (70b)

«eq* 52@ I2S1~ I2S!:S~jeq!:~ I2S!#:«0, (70c)

which is based on the energy-based equivalent inclusion met
as shown in Fig. 3. The Eshelby’s equivalent inclusion and
corresponding energy-based equivalent inclusion can still be
lated byaeq5a and a3

eq5ajeq . Note that,jeq!1⇒S(jeq)'S.
Then, due to Eq.~70c!,

«eq* '~S2I !:«0. (71)

Similar to Eq.~59!, the equivalent density of the energy distu
bance is

ueq5
U*

Veq5
1

2
s0:«eq* '

1

2
s0:~C* 2C0!:s0. (72)

4 Asymptotic Equivalent Eigenstrain of Crack

If D* 50 and j→0, the inhomogeneity becomes a penn
shaped crack.1 In view of Eq. ~33!, the eigenstrain of the crack i
determined by

1If D* 5} andj→0, the inhomogeneity becomes a penny-shaped anticrack,
the corresponding eigenstrain is determined byS:«* 52«0.
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~ I2S!:«* 5«0⇒«* 5~ I2S!21:«0. (73)

An asymptotic solution of the inverse is

~ I2S!21→ 1

j
~c1Sn1c2St!1A (74)

where

c15
1

2g

12n0

122n0 , c25
1

2g

1

22n0 ,
(75)

A5I2~122n0!gc11nn:Sn .

Note that, ifj→0,

~ I2S!:~c1Sn1c2St!
1

j
→~ I2S2Mj!:~c1Sn1c2St!

1

j

52M:~c1Sn1c2St!

52M :~c1Sn1c2St!

5~122n0!gc1Sn12~22n0!gc2St

1~122n0!gc1lnn:Sn (76)

due to

~ I2S!:Sn5~ I2S!:St5M̄ :Sn5M̃ :St50, (77)

and

~ I2S!:A→~ I2S2Mj!:A5A2S:A2M:Aj

5A2S1~122n0!gc1S: lnn:Sn2M:Aj

5I2~122n0!gc1lnn:Sn2S

1~122n0!
11n0

12n0 gc1Sn2M:Aj (78)

due to

S: lnn:Sn5Sn : lnn:Sn5
11n0

12n0 Sn . (79)

Therefore, forj→0,

~ I2S!:F1

j
~c1Sn1c2St!1AG

→I2S2M:Aj12~22n0!gc2St

1~122n0!gc1Sn1~122n0!
11n0

12n0 gc1Sn

5I2S2M:Aj1St1Sn

5I2M:Aj→I (80)

or

~ I2S!215
1

j
~c1Sn1c2St!1A1O~j!. (81)

The asymptotic expression of the eigenstrain of the crack is
tained,

«* 5~ I2S!21:«0→F1

j
~c1Sn1c2St!1AG :«0

→ 1

j
~c1Sn1c2St!:«

0. (82)

The energy disturbance caused by the presence of the cra
obtained,

and
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Uc* 5
V

2
s0:«05 lim

j→0

1

2

4p

3
a3jF1

j
~c1Sn1c2St!:«

0G
5

2p

3
a3~c1Sn1c2St!:«

0 (83)

or as an equivalent form

Uc* 5
Veq

2
s0:«eq* , h5

1

j
, Veq5

4p

3
a3,

(84)
«eq* 5~c1Sn1c2St!:«

0

which indicates that the energy-based equivalent inclusion o
crack is a sphere, i.e.,a1

eq5a2
eq5a3

eq5a, as shown in Fig. 4.
In view of Eqs.~58! and~21!, the energy disturbanceUc* of the

crack in Eq.~83! can be rewritten as

Uc* 5
a3

E0 @s0
2f ~n0!1t0

2g~n0!#, f ~n0!5
8

3
@12~n0!2#,

(85)

g~n0!5
16@12~n0!2#

3~22n0!

where s0
25s0:N:s0 and t0

25s0:T:s0. Evidently, it is exactly
the result obtained by Budiansky and O’Connell@11#. The coeffi-
cientsc1 andc2 are directly related withf (n0) andg(n0). Here,
we give the coefficients a new mathematical explanation, du
Eqs.~32! and ~75!,

S:M :S52S 1

c1
Sn1

1

c2
StD⇒Sn :M :Sn52

1

c1
Sn ,

(86)

St :M :St52
1

c2
St .

5 Prime Eigenstrain
In view of Eqs.~3! and ~41!, the limits of the Eshelby’s tenso

and the eigenstrain forj→0 are

lim
j→0
S→S, lim

j→0
«* 5uB21:«05

u

12u
@~12u!I1uS#:«0.

(87)

The limit of the eigenstrain is termed the prime eigenstrain an
still denoted by«* in this section. The asymptotic expressions
the prime eigenstrain are

«* → 1

G
S:«0, if G→0; «* →G~S2I !:«0, if G→`.

(88)

As shown in Eqs.~52! and~68!, the prime eigenstrain is the dom
nant part of the eigenstrain ifjeq!1. In fact, the approximate
asymptotic eigenstrains in Eqs.~57! and ~71! are just the

Fig. 4 „a… The Eshelby’s equivalent inclusion of a crack; „b…
the spherical energy-based equivalent inclusion of the same
crack
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asymptotic prime strains without the singular factors. Then, i
worthy to discuss the prime eigenstrain and some related pro
ties.

5.1 Local Prime Eigenstrain. In the local coordinate sys
tem, i.e.,n5$0,0,1%, the prime eigenstrain is determined by E
~87!,

«11* 5u«11
0 , «22* 5u«22

0 ,

«33* 5
u

12u
g33

0 1
u2

12u

n0

12n0 ~«11
0 1«22

0 !, (89)

«12* 5u«12
0 , «23* 5

u

12u
«23

0 , «31* 5
u

12u
«31

0

which is consistent with Eqs.~22.29! and~22.19! of Mura @2#. For
example, according to Eqn.~22.19! of Mura @2#,

«23* 5
u

122uS2323
«23

0 . (90)

On the other hand, by Eq.~87!,

«23* 5uS 11
2u

12u
S2323D «23

0 . (91)

Although they possess different forms, both of them yield t
same result sinceS232350.5.

5.2 Stress of the Inhomogeneity. The strain disturbance in
the inhomogeneityV is, due to Eqs. (A1) and~14!,

«5S:«* 5S:S uI1
u2

12u
SD :«05

u

12u
S:«0. (92)

The stress in the penny-shaped inhomogeneityV is uniform and
can be found due to Eqs. (B4) and~24!

ŝ5D0:~«01«2«* !5D0:@~12u!I1uS#:«0

5D0:@~12u!I1uS#:C0:s0

5@~12u!I1uST#:s0. (93)

The stress components of the inhomogeneity in the local coo
nate system,n5$0,0,1%, is determined by Eq.~93!

ŝ115~12u!s11
0 1

un0

12n0 s33
0 , ŝ225~12u!s22

0 1
un0

12n0 s33
0 ,
(94)

ŝ335s33
0 ŝ125~12u!s12

0 , ŝ235s23
0 , ŝ315s31

0 .

The inhomogeneity stress vector on the plane of the penny-sh
inhomogeneity is

n•ŝ5$ŝ31,ŝ32,ŝ33%5$s31
0 ,s32

0 ,s33
0 %5n•s0 (95)

which indicates that the inhomogeneity stress vector on the in
mogeneity plane is equal to the farfield stress vector on the s
plane and has nothing to do with the elastic modulusE* or E0.
The key leading to Eq.~95! is Eq. ~15!. By using Eqs.~93! and
~15!,

n•ŝ5n•@~12u!I1uST#:s05n•s01un•~2I1ST!:s0

5n•s01us0:~S2I !•n5n•s0. (96)

6 Influences of Unequal Poisson’s Ratios

During the preceding deduction, the equality ofn05n* is re-
quired to achieveD* 5(12u)D0 which simplifies the problem
significantly. Now we discuss the influences on the deduced
pressions owing to the deviation from the assumption, i.e.,n0

Þn* . Note that
SEPTEMBER 2001, Vol. 68 Õ 745
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C0:D* 5
n* 2n0

~122n* !~11u0!

m*

m0 ll1
m*

m0 I5unG ll1G l (97)

where

un5
n* 2n0

~122u* !~11n0!
, G5

m*

m0 . (98)

Then Eq.~33! can be recast as

~ I2uS!:«* 5u«02kl, (99a)

where

u512G, (99b)

k5unG~ l:S:«* 1tr «0!. (99c)

Note that theu defined in Eq.~99! is consistent with theu defined
in Eq. ~35! due ton05n* there. As compared with Eq.~36!, the
unequaln0 and n* will create an additional termkl which is a
spherical tensor and disappears ifn* 5n0. Then, the eigenstrain is
obtained,

«* 5«m* 1«gn* , (100a)

«m* 5u~ I2uS!21:«0, (100b)

«n* 52k~ I2uS!21: l. (100c)

The leading term«m* is exactly the eigenstrain«* for equaln* and
n0, as discussed in Section 3. The energy disturbance can als
written as a similar form

U* 5
V

2
s0:«* 5Um* 1Un* , Um* 5

V

2
s0:«m* , Un* 5

V

2
s0:«n* .

(101)

6.1 Equal Shear Moduli. Consider the case ofm05m* and
n0Þn* . Sinceu50 due tom05m* , one obtains by Eq.~100!

«m* 50, (102a)

«n* 52kl. (102b)

Substituting Eq. (102b) into Eq. (99c) then

k5un~2 l:S: lk1tr«0!⇒k5
un

11 l:S: lun
tr«05wtr«0

(103)

where

w5
un

11 l:S: lun
, l:S: l' l:S: l5

11n0

12n0 . (104)

Then,Um* 50 due to«m* 50, and the energy disturbance contri
uted by the unequal Poisson’s ratios is

Un* 5
V

2
s0:«n*52

2p

3
a3wtrs0tr«0j

52
2p~122n0!

3E0 a3w~ trs0!2j (105)

due to

tr«05
122n0

E0 trs0. (106)

Obviously,w is a finite quantity for any combination ofn* and
n0, and even forn* →0.5 since

n* →0.5⇒un→`⇒w→ 12n0

11n0 . (107)
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Therefore,Un* →0 if j→0, which indicates again that the energ
disturbance is trivial if the difference betweenE0 andE* is lim-
ited.

6.2 Infinitesimal Relative Shear ModulusG. For G→0 or
u→1, we adopt the following asymptotic expressions

«* → 1

G
S:«0, ~ I2uS!21→ 1

G
S, S→S. (108)

They are the prime eigenstrain and corresponding quantities;
e.g., Eqs.~88! and~47!. These asymptotic quantities dominate t
behaviors of the penny-shaped inhomogeneity ifjeq5j/G!1.
Note that

S:«* →S:S 1

G
S:«0D5

1

G
S:«0. (109)

Therefore,

k5unG~ l:S:«01tr«0!→unGS 1

G
l:S:«01tr«0D→unl:S:«* .

(110)

Note that, due to Eq.~60!,

l:S:C05
122n0

12n0

1

2m0 nn. (111)

Therefore,

k→unl:S:«* 5unl:S:C0:s05
122n0

12n0

un

2m0 nn:s0. (112)

Note that

~ I2uS!21: l→ 1

G
S: l5

11n0

12n0

1

G
nn. (113)

Then, the eigenstrain contributed by the unequal Poisson’s ra
is obtained by Eq.(100c)

«n* 52k~ I2uS!21: l→2
1

G

~122n0!~11n0!

~12n0!2

un

2m0 N:s0

(114)

with the singular factor 1/G. The corresponding energy distu
bance is

Un* 5
V

2
s0:«n* →2

2p

3
a3jeq

un*

2m0 s0
2,

(115)

un* 5
~122n0!~11n0!

~12n0!2 un

or in an equivalent form based on the energy-based equiva
inclusion method,

Un* 5
Veq

2
s0:«n,eq* , Veq5

4p

3
a3jeq , «n,eq* →2

un*

2m0 N:s0.

(116)

6.3 Infinitely Large Relative Shear Modulus G. For G
→` or u→2`, we adopt the following asymptotic expression

«* →G~S2I !:«0, ~ I2uS!21→I2S, S→S. (117)

They are the prime eigenstrain and corresponding quantities;
e.g., Eqs.~88! and~63!. These asymptotic quantities dominate t
behaviors of the penny-shaped inhomogeneity ifjeq5Gj!1.
Note that

S:«* →S:@G~S2I !:«0#50. (118)

Therefore,
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k5unG~1:S:«01tr«0!→unGtr«05
122n0

E0 unGtrs0.

(119)

The eigenstrain contributed by the unequal Poisson’s ratios is

«n* 52k~ I2uS!21: l→2
122n0

E0 unGtrs0~ I2S!: l (120)

and the corresponding energy disturbance

Un* 5
V

2
s0:«n* →2

2pa3jeq

3

122n0

E0 untrs0S trs02
11n0

12n0 s0D .

(121)

It should be noted that the deduced asymptotic eigenstrain
Eqs. ~114! and ~120! is based on the assumption that the prim
eigenstrain is the dominant part of the eigenstrain. Thus, th
asymptotic expressions is valid ifun* 2n0u!1.

7 Signs of Energy Disturbances
As discussed in Section 3 and Section 6, the energy disturb

of penny-shaped inhomogeneities is trivial unless the rela
shear modulusG is sufficient small or large. In his section, w
discuss the sign of energy disturbance of the penny-shaped i
mogeneity for the two cases. In view of Eqs.~61! and ~115!, the
energy disturbance takes following signs, ifG→0,

Um* 5Vequeq, ueq'
1

2
s0:C* :s0.0; Un* H .0 if n0.n*

50 if n05n*
,0 if n0,n*

(122)

for nonzeros0. In the the caseG→`, Eq. ~72! can be rewritten
as

Um* 5Vequeq, ueq'
1

2
s0:~C* 2C0!:s0<0 (123)

since the tensorC02C* is positive semidefinite, as discussed
Appendix C. The sign ofUn* for G→`, as shown in Eq.~121!,
depends on not only then* 2n0 but also the stress state.

The different signs of the energy disturbancesUm* for G→0 and
G→` just indicate a simple fact, through the variation of t
complimentary energy, that a weak inhomogeneity (G,1) sur-
rounded by a solid weakens the solid, and a strong inhomogen
(G.1) strengths the solid.

7.1 Energy Release Rates.The rate of the energy distur
bance is

U̇* 5U̇* ~a,G,n,¯ !5Gaȧ1GGĠ1Gnṅ1¯ (124)

where

Ga5
]U*

]a
, GG5

]U*

]G
, Gn5

]U*

]n
,¯ (125)

are the energy release rates due to the variations ofa, G, n, ¯,
respectively. Evidently

U* 5Vequeq⇒Ga5Sequeq, (126a)

Seq5
]Veq

]a
. (126b)

Especially, for a penny-shaped inhomogeneity andjeq!1,

Veq5
4p

3
a3jeq⇒Seq54pa2jeq , (127)

and for a crack

Veq5
4p

3
a3⇒Seq54pa2. (128)
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Thus,Seq is exactly the surface area of the energy-based equ
lent inclusionVeq. Equation~126b! shows that the sign of the
energy release rateGa is fully dependent on the sign ofueq. Note
that a penny-shaped inhomogeneity approaches a penny-sh
crack or anticrack ifG→0 or G→`, as discussed in Section 4
Then, the different signs ofGa for G→0 andG→` are consistent
with the fact that the energy release rates of cracks and anticr
have different signs, as pointed out by Hurtado@13#.

7.2 Apparent Young’s Modulus of C* . Both of the Eqs.
~122! and ~123! show that the compliance tensorC* plays a key
role in the equivalent densities of the energy disturbances. I
worthy to discuss the property of the tensorC* . Consider a body
subjected uniaxial stresss in the directionm. Here,« denotes the
normal strain in the same directionm caused by the uniaxial stres
s. If the body is of the compliance tensorC0, obviously, the stress
and stress are related bys5E0«. If the body is of the compliance
tensor C* , then s and « are related by the apparent Young
modulusE,

s5E«, E5E~m!. (129)

Consider the problem in the coordinate systems as shown in
2. If the directionm coincides with thex3-axis, the direction
cosines ofn can be expressed in the global coordinate systemn
5$n1 ,n2 ,n3%, wheren35m•n5cosa. In view of Eq. ~60!, one
obtains

1

E~m!
5C33335

1

m0 F 122n0

2~12n0!
N33331T3333G (130)

where N33335n3
45cos4 a and T33335n3

22n3
45cos2 a sin2 a, due

to Eq. ~10!. Therefore,

E~m!5E~a!5
E0

h
,

(131)

h52~11n0!cos2 aF 122n0

2~12n0!
cos2 a1sin2 aG .

The relationh5h(a,n0) is illustrated in Fig. 5. Evidently, 0<h
<1.0⇒E>E0.

8 Generic Damage Measurement
As shown Eq.~55!, the size of the energy-based equivale

inclusionVeq generally takes the form

Veq5hV. (132)

For a penny-shaped inhomogeneity, its size isV54p/3a3j with
the singular factorj, so the productjh should be finite to ensure
a finite Veq. For an inhomogeneity of finite size, its Eshelby
equivalent eigenstrain should contain no singular factor, otherw
its energy disturbance will be trivial or infinitely large. Let’s con

Fig. 5 The variation of h with respect to a and n0
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Table 1 Some characteristic quantities of different inhomogeneities

Inhomogeneities

V

V3p

Veq

V3p h P

Penny-shaped inhomogeneity

for G→0,jeq5
j

G
!1

j jeq
1

G
S

Penny-shaped inhomogeneity
for G→`, jeq5jG!1 j jeq G SÀI

Penny-shaped crack j 1
1

j
c1Sn1c2St

Spherical cavity 1 1 1
3~12n0!

725n0 F 12n0

2~122n0!
ll15I G

Rigid sphere 1 1 1 2
3~12n0!

2~425n0! S 125n0

11n0 ll15I D
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sider spherical inhomogeneities. If the inhomogeneity is a sph
cal cavity, its Eshelby’s equivalent eigenstrain can be determi
by

~ I2S̃!:«* 5«0⇒«* 5
3~12n0!

725n0 F 12n0

2~122n0!
ll15I G :«0

(133)

whereS̃ is the Eshelby’s tensor of spherical inclusions expres
in Eq. (A6). If the inhomogeneity is a rigid sphere, its equivale
eigenstrain can be determined by

S̃:«* 52«0⇒«* 52
3~12n0!

2~425n0! S 125n0

11n0 ll15I D :«0.

(134)

Naturally, h51 for the inhomogeneities of finite size, and the
Veq5V. Generally speaking, the Eshelby’s and energy-ba
equivalent eigenstrain can be expressed as

«* 5h«eq* , «eq* 5P:«0. (135)

Some quantities related to different inhomogeneities are liste
Table 1, whereVsp54p/3a3 is a reference size of a sphere wit
the radiusa.

As shown in Table 1, all theP tensors of the different inhomo
geneities are of the same order of magnitude. Note thatU*
5

1
2V

eqs0:«eq51/2Veqs0:P:«0. Therefore, the sizeVeq of the
energy-based equivalent inclusionVeq becomes the characteristi

Fig. 6 The evolution of the energy-based equivalent inclusion
Veq during the damaging process of a penny-shaped inhomo-
geneity: stiffness degrading, debonding, and cracking
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geometric measurement of the energy disturbance caused b
presence of the inhomogeneity. Naturally, the dimensionless d
age variable can be defined as~assuming only one single inhomo
geneity!

v5
Veq

V0 (136)

whereV0 is the volume of a representative unit cell in the micr
structure. If the inhomogeneity is a crack, the damage variabl
identical to that of Budiansky and O’Connell@11# defined in Eq.
~2! just scaled by 4p/3. For an inhomogeneity of finite size.h
51, then

v5
Veq

V0 5
V

V0 (137)

which is just Gurson’s damage variable~@14#!, the void volume
fraction of a porous solid.

We call Veq the generic damage measurement because
applicable to all types of inhomogeneities: cavities, weak a
strong inhomogeneities, and rigid inhomogeneities of infinitesim
or finite sizes. It is also convenient to depict the damaging p
cesses of inhomogeneities byVeq. Consider a penny-shaped inho
mogeneity with the relative modulusG0 and radiusa0 ~state 0!, as
shown in Fig. 6. The damaging process would be:~a! stiffness
degrading of the inhomogeneity, state 0→2; ~b! debonding be-
tween the inhomogeneity and matrix, state 2→3; and~c! crack-
ing, state 3→5. All the state variations, mechanically or geomet
cally, can be illustrated unitarily by a series of spheroids
spheres of the energy-based equivalent inclusions, as show
Fig. 6. The irreversible energy dissipation implies that the curr
spheroid or sphere is always expanding during the damaging
cess.

As shown in Eq.~126!, U* 5Vequeq⇒Ga5Sequeq. Similarly,
the Seq, which is the surface area of the energy-based equiva
inclusion Veq, is the generic measurement of the energy rele
rate for the radius propagation. Note that the surface area
spheroid or sphere is four times of the area of the correspon
ellipse or circle in Fig. 6. From the thermodynamic point of vie
the Ga is the driving force behind the radius propagation. Sin
the current spheroid or sphere is always expanding, the driv
force is always increasing, too.

9 Conclusion
The Eshelby’s problem generally results in complicated form

lation even in a well-chosen local coordinate system. It loo
quite difficult or even impossible to express the solutions exp
itly in Eshelby’s tensor as an entity in global coordinate syste
The present work demonstrates that such an approach is pos
Transactions of the ASME



c
i
r

t

f

i

h

n

i
r

n

n

a

al

n if
m-

u-
-

h
y

-
er
ion
rain.
d by

rial

to
d

the
eity
at least for penny-shaped inhomogeneities including cracks.
deduced eigenstrain and their asymptotic expressions are a
tensorial form which help us gain deeper insight into their sub
relations.

In order to describe the macroscopic behavior of microdefe
this work focus on the tensorial representation and the analys
energy disturbances caused by presence of microdefects. Fu
more, the so-calledenergy-based equivalent inclusion methodis
introduced, as a certain generalization of Eshelby’s equivalen
clusion method. For the inhomogeneities of finite size, both me
ods are equivalent to each other. For the inhomogeneities o
finitesimal size, e.g., penny-shaped inhomogeneities, the ene
based equivalent inclusion method can effectively remove
singularities of the size and eigenstrain of the Eshelby’s equ
lent inclusion. The energy-based equivalent inclusionVeq is al-
ways of finite size, and may be geometrically different with t
corresponding inhomogeneity, unlike the Eshelby’s equivalent
clusion V. For a penny-shaped inhomogeneity, the energy-ba
equivalent method cannot describe the local stress field but
accurately yield the energy disturbance, which is sufficient
damage modeling.

The energy-based equivalent inclusions of penny-shaped i
mogeneities are spheroids. Especially, theVeq of a crack is a
sphere. The size of energy-based equivalent inclusions,Veq, can
be used as the generic damage measurement for all types of
mogeneities: cavities, weak and strong inhomogeneities, and
inhomogeneities of infinitesimal or finite sizes. TheVeq-based
volume fraction is consistent with the well-known damage va
ables of Budiansky and O’Connell@11# and Gurson@14#.

Acknowledgments
The work reported here was jointly supported by the Natio

Science Foundation of China with grant No. 59879005 and
Austrian National Science Foundation under contract No. S080
TEC.

Appendix

A Eshelby’s Tensor. When an strain« i j* is prescribed in a
finite subdomainV in a homogeneous materialD as shown in Fig.
1~a! and it is zero in the matrixD2V, thenV is called an inclu-
sion. This type of prescribed strain« i j* is called ‘‘eigenstrain.’’ If
an ellipsoidal inclusion, as shown in Fig. 1~b!, is prescribed by
uniform eigenstrain« i j* , the strain and stress fields become u
form for the interior points inside the inclusion~@1,2#!. The elastic
strain« i j in interior point is

« i j 5Si jkl «kl* (A1)

whereSi jkl is called Eshelby’s tensor and has the symmetry

Si jkl 5Sjikl 5Si jlk . (A2)

The Eshelby’s tensor of an ellipsoidal inclusion is generally as
ciated with some standard elliptic integrals. For a spheroidal
clusion, i.e.,a15a25a, the Eshelby’s tensor can be simplified

Si jkl 5Si jkl ~n,j!, j5
a3

a
(A3)

wheren is the Poisson’s ratio of the material, for example,

S11115S22225
1

4~12n! F 3j2

2~j221!
2S 122n2

9

4~j221! DgG
~A4!

S33335
1

2~12n! F122n1
3j221

j221
1S 122n1

3j2

j221DgG
where
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g5H j

~j221!3/2 @j~j221!1/22coth21 j# if j.1

j

~12j2!3/2 @cos21 j2j~12j2!1/2# if j,1

. (A5)

If j51, i.e.,a15a25a35a, the Eshelby’s tensor of the spheric
inclusion is simply an isotropic tensor

Si jkl 5
5n21

15~12n!
d i j dkl1

425n

15~12n!
~d ikd j l 1d i l d jk!. (A6)

The spheroidal inclusion approaches a penny-shaped inclusio
j!1 or a@a3 , and then the Eshelby’s tensor can be further si
plified as

S11115S22225
1328n

32~12n!
pj, S3333512

122n

12n

p

4
j

S11225S22115
8n21

32~12n!
pj, S11335S22335

2n21

12n

p

8
j

(A7)

S33115S33225
n

12n S 11
4n11

8n
pj D

S13135S23235
1

2 S 11
n22

12n

p

4
j D , S12125

728n

32~12n!
pj.

All other nonzero components are obtained by the cyclic perm
tation of ~1, 2, 3!. If j→0 or a3→0, the Eshelby’s tensor ap
proaches the limit

S23235S23325S32235S323250.5,

S13135S13315S31135S313150.5,
(A8)

S33115S33225n/~12n!,

S333351, and all otherSi jkl 50.

B Eshelby’s Equivalent Inclusion Method. Eshelby @2#
solved the problem of an ellipsoidal inhomogeneity byequivalent
inclusion method. Consider an infinitely extended material wit
the elastic moduliDi jkl

0 , containing an ellipsoidal inhomogeneit
domainV as shown in Fig. 1~b! with the elastic moduliDi jkl* . Let
us denote the applied stress at infinity bys i j

0 and the correspond
ing strain by« i j

0 . « i j* has been introduced here arbitrarily in ord
to simulate the inhomogeneity problem by use of the inclus
method. Such an eigenstrain is called an equivalent eigenst
The stress disturbance and the strain disturbance are denote
s i j and « i j , respectively. The total stress or actual stress iss i j

0

1s i j , and the total strain is« i j
0 1« i j . Hooke’s law is written as

s i j
0 1s i j 5Di jkl* ~«kl

0 1«kl! in V
(B1)

s i j
0 1s i j 5Di jkl

0 ~«kl
0 1«kl! in D2V.

Now consider an infinitely extended homogeneous mate
with the elasticDi jkl

0 everywhere, containing domainV with an
eigenstrain« i j* . When this homogeneous material is subjected
the applied strain« i j at infinity, the resulting total stress an
strain, respectively, ares i j

0 1s i j , « i j
0 1« i j , and « i j

0 1« i j 2« i j* in
V. Then, Hooke’s law yields

s i j
0 1s i j 5Di jkl

0 ~«kl
0 1«kl2«kl* ! in V

(B2)
s i j

0 1s i j 5Di jkl
0 ~«kl

0 1«kl! in D2V.

The necessary and sufficient condition for the equivalence of
stresses and strains in the above two problems of inhomogen
and inclusion is

Di jkl* ~«kl
0 1«kl!5Di jkl

0 ~«kl
0 1«kl2«kl* ! in V. (B3)
SEPTEMBER 2001, Vol. 68 Õ 749
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If s i j
0 5Di jkl

0 «kl
0 is a uniform stress,« i j* is also uniform inV and

can be determined by Eq. (A1). Therefore,

ŝ i j 5Di jkl* ~«kl
0 1Sklmn«mn* !5Di jkl

0 ~«kl
0 1Sklmn«mn* 2«kl* !

(B4)

from which« i j* is determined. Evidently,ŝ i j 5s i j
0 1s i j in V. The

elastic strain energy for this system is

U5
1

2 ED
~s i j

0 1s i j !~« i j
0 1« i j !dD

5
1

2 ED
s i j

0 « i j
0 dD1

1

2 EV
s i j

0 « i j* dD5U01U* . (B5)

In this paper,U* is also termed the energy disturbance,

U* 5
1

2 EV
s i j

0 « i j* dD. (B6)

C Positive Definiteness of the C–C* Tensor. The C and
C* tensors are defined in Eqs.~22! and ~23!, respectively. In the
local coordinate systemx18x28x38 as shown in Fig. 2, the compo
nents of the stress tensors are denoted

s5F sx txy txz

tyx sy syz

tzx tzy sz

G (C1)

wheresx ,sy ,sz are along thex18 ,x28 ,x38 axes, respectively. In
view of Eq. ~23!,

u* 5
1

2
s:C* :s5

w

2E
sz

21
1

2m
~tzx

2 1tzy
2 ! (C2)

where

w5
~122n!~11n!

12n
, 0<w<1. (C3)

Note that

u35
1

2
s3 :C:s35

1

2E
sz

21
1

2m
~tzx

2 1tzy
2 !,

(C4)

s35F 0 0 txz

0 0 tyz

tzx tzy sz

G .

The effect of theC* tensor can be shown by comparing Eq
(C2) and (C4). Evidently, u3>u* , u1* 51/2(s2s3):C* :(s
2s3)50. Note that

u5
1

2
s:C:s5

1

2
sn :C:sn1

1

2m
~txy

2 1tzx
2 1tzy

2 !,
(C5)

sn5F sx 0 0

0 sy 0

0 0 sz

G .
750 Õ Vol. 68, SEPTEMBER 2001
-

s.

Therefore

u2u* 5
1

2
s:~C2C* !:s5

1

2
sn :C:sn1

1

2m
txy

2 2
w

2E
sz

2

>
1

2
sn :C:sn2

w

2E
sz

2

5
1

2E
$sx ,sy ,sz%F 1 2n 2n

2n 1 2n

2n 2n 12w
G H sx

sy

sz

J . (C6)

The 333 matrix has three eigenvalues:

l150, l25
3n222n11

12n
.0, l3511n.0 for 0<n<0.5,

(C7)

so the matrix is positive semidefinite. Therefore, the tensorC–C*
is also a positive semidefinite tensor.
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On the Simulation of
Discontinuous Functions
Discontinuous function constraints arise during the calculation of surface contact,
tion, and friction effects in studies of the behavior of complex systems. These non
effects are mathematically defined by inequality constraints of the form 0>g~x~t!,t!. The
unknown in the problem is the time, t* , when the equality condition is reached. Th
paper presents an exact solution for t* , which is obtained by introducing a slack variabl
that replaces time as the independent variable, leading to an extended state-space
noniteratively integrated to the constraint surface. Several applications are present
demonstrate the method.@DOI: 10.1115/1.1387022#
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1 Introduction
Discontinuous system dynamics models describe many pr

cal problems in science and engineering. Mathematically, the
continuous system models are modeled by inequality constra
As shown in Fig. 1 the motion is divided into different motio
phases, where different dynamical models are valid. Computat
ally the problem is to find the time,t* , when the old motion phase
is replaced by a new motion phase~Carver @1#, Ellison @2#, and
Enright et al.@3#!. Examples of discontinuous constraints includ
~i! the height above a surface,~ii ! the switching of the sign of a
velocity component,~iii ! impact phenomena,~iv! hysteresis,~v!
structure varying systems, or~vi! a force component exceeding
critical value. Detecting when a discontinuous event takes plac
straightforward; one simply monitors sign changes in the c
straints. The challenge is finding the time,t* , because it is im-
plicitly defined as a function of the constraint condition. Findi
t* is important, because the governing differential equations
assumed to change discontinuously att* .

Several conventional approaches are presented for han
nonlinear problems subject to discontinuous inequality constr
conditions. The strengths and weaknesses of these approach
discussed. The main contribution of this paper is the presenta
of a new method for noniteratively localizingt* . This approach
permits an accurate integration of the response of discontinu
systems. The advantages of the new method are that~1! the inte-
gration algorithm never passes over a singular event~thereby
avoiding numerical instabilities!, ~2! no iteration is required,~3!
conventional integration routines can be used, and~4! little com-
putational overhead is required to implement the algorithm. D
continuous system behaviors that can be handled include ma
properties, nonlinear behaviors, geometry, kinematic effects,
pact, intermittent contact, and other sources.

The paper consists of six major sections. Current approac
for handling discontinuous system behaviors are presented in
tion 2. The slack variable algorithm is presented in Section 3. T
section covers mathematical models, the slack variable algori
the differential equation fordt/ds, and the extended state-spa
model. Two applications are presented in Section 4. One m
consists of a simple one-dimensional problem that can be han
analytically. The second application considers a toy woodpec
problem that is highly nonlinear in its behavior because the nu
ber of degrees-of-freedom vary and the system is subjecte
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the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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multiple impulsive inputs. A strategy is presented for handli
problems characterized by intermittent contact, where multi
constraints can be active at one time in Section 5. Conclusions
presented in Section 6.

2 Current Approaches
Several techniques have been used for handling problems

nonlinear and discontinuous behaviors. The computational p
lem is that standard numerical integration algorithms have b
derived under the assumption that the variables being integr
are continuous through all the derivatives being sampled~Filippov
@4#, Halin @5#, and Pfeiffer@6#!. Discontinuous problems, how
ever, violate this basic assumption by introducing discontinu
changes into the first or higher derivatives of the system mod
~see Fig. 2~a!!. As a result, it is not surprising that standard n
merical methods have problems handling discontinuous proble
A further complication is that a discontinuous event can occu
any time. As a result, algorithms cannot be designed in advanc
change models at predetermined times to avoid discontinuous
tem behaviors.

A discontinuous event is detected during an integration ti
step by monitoring sign changes in the inequality constraints~see
Fig. 3!. The most naı¨ve strategy for handling nonlinear problem
is simply to ignore the existence of the discontinuous syst
changes. A potential risk of this approach is that the integrat
algorithm can become unstable or be subject to unknown la
integration errors. Clearly, this approach is unacceptable for
plications where high-fidelity behavior predictions are required

The ideal solution is to noniteratively integrate the solution
the switch timet* , change the equations being integrated, a
restart the integration. This approach avoids having the nume
integration algorithm sample the discontinuous changes in
governing differential equations. The challenge is findingt* , be-
cause it is implicitly defined by the inequality constraint and t
nonlinear nature of the governing differential equations.

Four approaches are frequently used for simulating syst
with discontinuous behaviors. First, one can use a very small s
size or variable step-size control algorithm. This approach bri
the system dynamics very close tot* . This approach is successfu
for many applications; however, very long run times are poss
for sensitive problems. Second, root finding strategies
derivative-based iterative algorithms can be introduced for loc

2,
on

tment
nd

he
Fig. 1 Discontinuous model motion phases
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izing t* . This approach increases algorithm complexity, and m
interations may be required for predictingt* . Third, a low-order
low-accuracy integration algorithm that is insensitive to the pr
ence of a discontinuity can be used. The risk of this approac
that large undetected errors can develop in the integrated solu
yielding meaningless results. Fourth, smoothing algorithm
which attempt to reduce the strength of the discontinuity by pu
ing the discontinuous changes in the system behaviors into hi
derivatives, are introduced. Figures 2~a! and 2~b! present an ex-
ample of a control-smoothing algorithm. In this example, the
stantaneous jump nonlinearity is replaced by a transition reg
that spreads the discontinuous change over a finite time inte
~see Fig. 2~b!!. The problem with this approach is that the re
physics is not modeled and that the resulting solution may
meaningless. In all four cases the normal guarantees of solu
accuracy are potentially compromised. All of these topics are th
oughly reviewed in Chapter 6 of Soellner and Fuhrer@7#.

In summary, the basic problem is thatt* is implicitly defined
by the constraint and the nonlinear character of the govern
equations. The implicit nature of the problem makes the prob
hard to deal with numerically. What is well known is the chan
in the inequality constraint that is required to reach the equa
condition that definest* . This observation motivates a change
variables solution technique in Section 3. The new algorithm
places time as the independent variable, with a slack variable
measures the distance to the equality condition for the constr
The advantage of this approach is that the slack variable prob
formulation permits the nonlinear system to be noniteratively
tegrated to the constraint surface.

3 Slack Variable Method
During a simulation, when a sign change is detected in a c

straint, a change of variables is introduced that replaces the i
pendent variable time,t, with an exact distance-like slack variabl

Fig. 2 „a… State variable discontinuity, „b… smoothed state vari-
able discontinuity

Fig. 3 Discontinuity detected in the time interval and slack
variable initial condition
752 Õ Vol. 68, SEPTEMBER 2001
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s, that measures the distance to the equality constraint cond
~see Fig. 3!. The slack variable is described as a distance-l
variable because in different problem formulationss can have
units of length, velocity, force, work, potential, or any valid ge
eralized coordinate. There are two significant benefits of t
transformation. First, the inequality constraint is converted into
equality constraint. Second, the new equality constraint defin
functional relationship between time and the slack variable. T
key step in the algorithm is that the functional relationship b
tween time and the slack variable can be differentiated to prov
a differential equation fordt/ds. The equation fordt/ds permits
the original implicit n-dimensional problem for solving fort* to
be embedded in anexplicit (n11)-dimensional problem. The ex
tended state-space model permits time to be integrated as a
tion of the slack variable, thereby eliminating the need for
iterative root solving procedure.

In the (n11)-dimension problem formulation time,t, is re-
placed with the slack variable,s, as the independent variable, s
that t5t(s). The limits of integration for the (n11)-dimensional
problem formulation are defined ass5s0 to s50, where the upper
limit of integration,s50, denotes that the system is on the co
straint surface at the end of the integration. With the state on
constraint surface, the discontinuous changes in the system
namics are introduced. The integration process is then restarte
usingx(t* (0)) as theinitial condition for the numerical method
The integration process then continues until either a new disc
tinuity is encountered or the end of the integration interval h
been reached. The flow diagram for the algorithm is presente
Fig. 4.

3.1 Mathematical Model. The constrained equations o
motion for a physical system can be cast in the first-order for

dx

dt
5 f ~x,t !, x05b (1a)

where

C~x~ t !,t !>0 (1b)

Fig. 4 Flow diagram for the slack variable integration algo-
rithm
Transactions of the ASME
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wherex denotes then31 state vector,x0 denotes the initial con-
dition vector for the state,t denotes time,d( )/dt denotes the
derivative with respect to time, andC(* ) defines the constrain
surface for the inequality constraint.

Equation ~1b! is monitored during each time interval@ tn ,tn

1h# for a change in sign forC(* ) ~@7#! ~see Fig. 3!. As long as
C(* )Þ0, the numerical integration process is straightforward a
accurate. Detecting the sign change forC(* ) is important because
numerical algorithms are not designed to handle discontinu
changes in the derivatives being sampled. Section 3.2 introduc
slack variable algorithm that permitst* to be determined nonit-
eratively.

3.2 Slack Variable Algorithm. Assuming that a sign
change has been detected during the current integration time
~i.e., @ tn ,tn1h#!, the solution for the pair (x,t) is reset to (xn ,tn).
The inequality constraint of Eq.~1b! is locally redefinedas an
equality constraint by introducing a slack variable,s, leading to

s2C~x~ t !,t !50 (2)

wheres represents a distance-like measure to the equality co
tion of Eq. ~1b!. The initial value fors is defined ass0 , where
s05C(x(tn),tn). The desired value for the slack variable iss
50, which corresponds to the conditionC(x(t* ),t* )50, where
t* is the unknown time for the discontinuous event.

3.3.1 Change of Variables Transformation.Equation~2! de-
fines a functional relationship betweent ands. With t as the inde-
pendent variable, Eq.~1! is hard to solve. However, ifs becomes
the independent variable then Eq.~1! is easy to solve. This obser
vation motivates us to introduces as the independent variable b
assuming thatt5t(s) in Eq. ~2!, leading to

s5C~x~ t~s!!,t~s!!. (3)

Two steps are required for transforming Eq.~1! so thatt5t(s).
First, Eq. ~3! is used to create a differential equation fordt/ds.
Second, Eq.~1a! is transformed so thats becomes the independen
variable. For these transformations to be well defined, it is
sumed that Eq.~3! has continuous first-order partial derivative f
s, x, and t. Equation~3! is used in Section 3.3.2 for deriving
differential equation fordt/ds.

3.3.2 Differential Equation for t(s). Assuming that Eq.~3!
possesses the required continuous partial derivatives, a differe
equation is obtained fordt/ds, by using the chain rule of calculu
to differentiate Eq.~3! with respect tos, one obtains

15S ]C

]x D T dx

dt

dt

ds
1

]C

]t

dt

ds

where the solution fordt/ds follows as

dt

ds
5F S ]C

]x D T dx

dt
1

]C

]t G21

. (4)
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The solution for Eq.~4! is valid as long as the@* #Þ0. Equation~4!
is further simplified by recalling Eq.~1a!, leading to

dt

ds
5F S ]C

]x D T

f 1
]C

]t G21

. (5)

Equation~5! defines the rate of change of time as a function of
distance to the constraint surface. What is still unknown isdx/ds,
which defines how the state changes as a function of the dist
to the constraint surface. Equations~1a! and~5! are used to define
an extended state-space model in Section 3.3.3.

3.3.3 Extended State-Space Model.With s as the new inde-
pendent variable an extended (n11)-dimensional state-space
defined by the following variable:

y~s!5@x~ t~s!!,t~s!# (6)

wherey is the (n11)31 extended state-space model andt(s) is
now treated as a dependent variable. The initial condition fort is
t(s0)5tn ~see Fig. 3!. The initial condition for y is y(s0)
5@x(tn),tn#. The interval for the slack variable integration iss
P@s0,0#.

Two steps are required for defining the differential equation
y. First, from Eq.~5! the differential equationdt/ds is already
available. Second, the chain rule of calculus is applied to tra
form Eq. ~1a! from a function oft to a function ofs, as follows:

dx

dt
5

dx

ds

ds

dt
5 f

leading to the transformed equation

dx

ds
5 f

dt

ds
5 f F S ]C

]x D T

f 1
]C

]t G21

. (7)

Equations~5! and ~7! provide the required differential equation
for solving the slack variable algorithm. By combining Eqs.~5!
and~7!, the extended state-space differential equations can be
in the form

dy

ds
5S dx

ds
dt

ds

D 5S f
1D F S ]C

]x D T

f 1
]C

]t G21

(8)

which is subject to the following initial conditions forx(s) and
t(s):

S x~s0!

t~s0! D5S x~ tn!

tn
D . (9)

The solution fory(s) is integrated to the constraint surface b
solving the following set of equations:
.

Table 1 Equations for time localization algorithm for discontinuous functions

Original State-Space Model:
Independent variable:t

x~t!5x~0!1E
t0

t

fdt

~Nominal governing equations! subject to: 0>C(x(t),t)
iterative methods required to findt*

Extended State-Space Model:
Independent variable:s Sx~0!

t~0!
D5Sx~s0!

t~s0!
D1E

s0

0 S f
1DFS]C

]xDT

f1
]C

]t G
21

dt

Non-iterative method to findt(0)5t*
~Equations for locally integrating to a constraint surface
Note t(0) is the discontinuous event time.!
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S x~0!

t~0!
D 5S x~s0!

t~s0!
D 1E

s0

0S f
1D F S ]C

]x D T

f 1
]C

]t G21

ds. (10)

The left-hand side of Eq.~10! providesx(0) on the constraint
surface andt(0)5t* , which is the originally unknown discon
tinuous event time. Sinces0 is typically small, a single integration
step in Eq.~9! is all that is generally required. The left-hand sid
of Eq. ~10! also defines the initial conditions for restarting th
integration of Eq.~1a! after the discontinuous changes have be
introduced into the differential equations~see Fig. 4!.

Equations~1a! and ~10! provide a complete algorithm for nu
merically integrating the response of systems subject to disc
tinuous behaviors. The governing equations are summarize
Table 1. This algorithm is particularly useful for problems ch
acterized by friction, stiction, variable topology, and multipl
intermittent contact dynamics.

4 Applications
Two applications are presented that describe how the slack

able transformation can be applied in different situations. The
problem considers a one-dimensional linear problem where
constraint depends on a specific location being reached. The
ond problem considers a generalization to a variable topol
problem with two to four degrees-of-freedom, while being subj
to multiple discontinuous impulsive events.

4.1 One-Dimensional Problem. These ideas are mad
more concrete by considering the following problem. Assum
that Eq.~1a! is defined by the following one-degree-of-freedo
system

ẋ5ax, x05b/10; a,.b>0

where the inequality constraint of Eq.~1b! becomes

0>b2x.

The inequality constraint requiresx to be less thanb. Introducing
the slack variable,s, the transformed inequality constraint is ca
in the form

s5b2x.

At t5t0 , from the initial condition forx0 , it follows that the
distance to the constraint surface iss059b/10. Assuming thats
replacest as the independent variable~i.e., t5t(s)!, the constraint
is transformed as follows:

s5b2x~ t~s!!. (11)

The differential equation fort(s) is obtained by differentiating Eq
~11! with respect tos, leading to

15
ds

dx

dx

dt

dt

ds
5~21!* ~ax!*

dt

ds

which yields the following differential equation fort(s):

dt

ds
5

21

ax
. (12)

From Eqs.~10! and ~12! the general solution for the extende
state-space is cast in the form

S x~0!

t~0! D5S b/10
0 D1E

9b/10

0 S ax
1 D @~21!~ax!10#21ds

or

S x~0!

t~0! D5S b/10
0 D1E

9b/10

0 S 21
21/axDds.

Integrating the trivial top equation leads to
754 Õ Vol. 68, SEPTEMBER 2001
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x~0!5b/101E
9b/10

0

~21!ds5b

wherex(0)5b is the desired boundary condition forx. Leaving
only the second integral to be evaluated as

t~0!5
21

a E
9b/10

0 ds

x
5

21

a E
9b/10

0 ds

b2s
52S 2 ln~b!1 lnS b

10D D /a

5 ln~10!/a

where the equality constraint has been used to simplify the i
gral. The final result is thatt(0)5 ln(10)/a is the predicted time
for constraint of Eq.~11! to be identically zero. This prediction
can be checked in this special case by analytically integrating
original differential equation and imposing the initial conditio
yielding the solution

x~ t !5x0eat5
b

10
eat.

This equation is solved for the time whenx5b, yielding

t5 ln~10!/a

which agrees with the prediction obtained from integrating
extended state-space formulation.

4.2 A Toy Woodpecker Modeling Problem. The algorithm
of Section 3 is applied to the problem of modeling the motions
a toy woodpecker that is attached to a sleeve, while it slides do
a rod. The problem nonlinearities arise because~1! the toy expe-
riences multiple impulse loads, and~2! the number of degrees-of
freedom are either free or fixed depending on the angular mo
of the toy. This problem is taken from Pfeiffer@6# and Soellner
and Führer@7# ~see Fig. 5!. The toy woodpecker model consists o

• a rod where the woodpecker slides down,
• a sleeve that glides down the rod with some play allow

and
• a the woodpecker is connected to the sleeve by a torsio

spring.

The nonlinear system behaviors arise from several sources.
system has two degrees-of-freedom. One rotational,u, defines the
angle between the rod and the sleeve. One translational,z, defines
the motion of the combined sleeve/woodpecker when sliding m
tions are possible down the rod. The complexity of the probl
arises because the sleeve sliding motion stops for the sle
woodpecker system whenuuu.uuK1u. Another complexity is that
the system experiences an impulsive load when the woodpe
strikes the rod whenu52uK2 , whereuK1,uK2 . The sleeve mo-

Fig. 5 Toy woodpecker problem
Transactions of the ASME
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tion is modeled as a massless joint~Pfeiffer @6#!. Only small os-
cillations are considered. The governing differential equations

Equation 1: ~u is the only degree-of-freedom,z5constant,
dz/dt50!

~ I 21m2b2!ü52cu1m2bg

Equation 2:~two degrees-of-freedom!

F I 21m2b2S 12
m2

m11m2
D 0

m2b ~m11m2!
G S ü

z̈D5S 2cu
~m11m2!gD .

The impact of the woodpecker bill is elastic. The other impa
are nonelastic and lead to jumps in the angular velocity,u̇. The
impulse changes to the angular velocity are defined by

• impact at the top of the sleeve

u̇15~12d3!S u̇21
m2b

I 21m2b2 ż2D ,

impact at the bottom of the sleeve

u̇15~12d1!S u̇21
m2b

I 21m2b2 ż2D ,

impact of the woodpecker bill

u̇152 u̇2

whereu̇2, ż2 are the velocities before the impact andu̇1, ż1 are
the velocities after the impact.

The constants for the problem have been taken from Pfe
@6#: b50.0015 m, a50.025 m, m150.003 kg, m250.0045 kg,
I 25731027 kg-m2, c50.0056 Nm, d350.04766,d150.18335,
g59.81 m/sec2, uk1510 deg,uk2512 deg.

4.2.1 Distinct Motion Phases.The motion is divided into
five distinct phases. The angular motion of the woodpecker
fines each phase. The motion phases are monitored during a s
lation to determine when the number of degrees-of-freed
change and when impulse loads are applied to system. The
motion phases are described as follows:

Phase 1 u.uK1 : The woodpecker swings to the right unt
it reaches its maximum amplitude and then swings back to
left. During this phase the translational degree-of-freedom
locked.

Phase 2 2uK1,u<uK1 : Phase 1 ends whenu5uK1 and
the translational degree-of-freedom is released so that the sle
woodpecker system can move downward. The system experie
an impulse when the translational motion starts.

Phase 3 2uK2,u<2uK1 : Phase 2 ends whenu52uK1 ,
the rotational velocity impulsively changes, and the impact st
the sleeve motion.

Phase 4 2uK2<u,2uK1 : Phase 3 ends whenu52uK2 ,
the woodpecker touches the rod with its bill, and the rotatio
velocity impulsively reverses direction. The sleeve motion
mains locked.

Table 2 Number of nonlinear event as a function of the num-
ber of integration steps

Number of Integration Steps Number of Events Detected

100 10
200 25
500 25

1000 30
2000 31
5000 31

10,000 31
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Phase 5 2uK1<u,uK1 : Phase 4 ends whenu52uK1 ,
the rotational velocity is impulsively changed, the sleeve mot
is released and the sleeve/woodpecker again moves down the
This phase continues untilu5uK1 , the rotational motion is im-
pulsively changed, the sleeve motion stops, and Phase 1 be
again.

4.2.2 Numerical Simulation Results for the Woodpec
Rotational/Translational Impact Problem.A standard fourth-
order Runge-Kutta integration algorithm is used with a fixed
tegration step size to generate the simulation results~Hildbrand
@8#, and Halin@5#!. Several simulations have been run to ident
the number of nonlinear events that occur during a one-sec
simulation. As shown in Table 2, 2000 integration time-steps
required before the number of nonlinear events becomes inse
tive to the integration step-size.

Simulation results are presented in Figs. 6–12. A phase diag
of the angular woodpecker motion is presented in Fig. 6. T
motion is seen to complete approximately one complete cy
before the motion history repeats in the phase space.

The angular time history motion is presented in Fig. 7. T
motion is seen to be nearly periodic. The lower limit of the ang
lar motion is governed by the Woodpecker’s bill striking the r
and reversing the direction of the motion. The motion is basica
smooth and continuous.

Fig. 6 Phase variable plot for woodpecker angle-angular rate
plot

Fig. 7 Woodpecker angle time history

Fig. 8 Woodpecker angular rate time history
SEPTEMBER 2001, Vol. 68 Õ 755
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The angular rate time history is presented in Fig. 8. Disconti
ous changes in the angular rates are present. The motion is
symmetric with respect to the time axis. These differences
attributed to the two impulsive impacts that take place when
angle is negative, verses the single impulsive impact that ta
place when the angle is positive.

The woodpecker’s height on the rod is presented in Fig. 9.
motion is seen to highly discontinuous. Multiple stops and sta
occur during the motion.

The woodpecker’s translational velocity relative to the rod
presented in Fig. 9. Very sharp changes in the translational ve
ity are observed.

Fig. 9 Woodpecker height on rod

Fig. 10 Woodpecker translational velocity relative to the rod

Fig. 11 Nonlinear phase motion time history

Fig. 12 Model degree-of-freedom time history
756 Õ Vol. 68, SEPTEMBER 2001
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The coupled rotational-translational motion goes through f
phases of motion that are defined by the angular motion and
pulsive constraint inputs. There is a fifth motion phase, but i
solely defined by motion reversal when the woodpecker bill h
the rod. The motion phase history is presented in Fig. 11. T
degree-of-freedom model change during the motion and Fig.
presents the changes in the number of model degrees-of-free

A discontinuous event has typically been detected withus0u
;0.005. After the one-step integration algorithm of Eq.~10! has
been applied the value for the constraint has been found to
uCu;10212.

5 Intermittent Constraint Handling
The solution for Eq.~1! is complicated when the physical ap

plication must track several constraints simultaneously. The s
variable formulation only depends on identifying the next co
straint to reach zero. As a result, if one or more constraints p
through zero during the sampling of Eq.~1!, an estimate is made
by extrapolating an estimate fort* from all of the active con-
straints. Taylor expanding slack variable for each active constr
leads to

si~ t i* !'si~ tn!1
dsi

dt
~ t i* 2tn! (13)

where t i8 is the estimated time forith constraint to reach zero
Equation~13! is solved by setting the left-hand side to zero, lea
ing to the following Newton-like estimate fort i8:

t i* 'tn2si /dsi /dt.

The smallest estimate fort
i

defines the constraint equation to b
used for the extended state-space transformation of Eq.~10!.

5 Conclusions
This paper has presented a slack variable formulation for h

dling inequality constraints. The new algorithm eliminates t
need for iterative approaches for solving constraints for the ex
time that a constraint is exactly satisfied. A slack variable t
converts the inequality constraint into an equality constraint
introduced. The key step in the algorithm is that the slack varia
replaces time as the independent variable. The transformed
straint equation is used to define a differential equation for time
a function of the slack variable. The original differential equatio
are transformed to become a function of the slack variable.
extended state-space is defined that permits the state to be n
eratively integrated to the constraint surface. The advantage
the new method are that~1! the integration algorithm never passe
over a singular event~thereby, avoiding numerical instabilities!,
~2! no iteration is required,~3! conventional integration routine
can be used, and~4! little computational overhead is required t
implement the method. These algorithms support interdisciplin
problems in solid mechanics, structures, dynamics and con
where damping, friction, stiction, and variable topology proble
arise. Two examples are presented that demonstrate the effec
ness of the slack variable formulation.
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Relationship Between the
External Force and the Specific
Work of Fracture R for
Steady-State Tearing and Peeling
of Elastoplastic Materials
A simple relationship is obtained between the external force F and the fracture tough
R for thin sheets in steady state elastoplastic combined tearing and peeling along
similar paths. The relationship depends only on the material properties (E,sy , anda for
an elastoplastic material with linear hardening) and strip cross section (B and H).
earlier analysis (which incorporates transient tearing and peeling) requires lengthy c
putations over the whole length of the strip. The present analysis avoids that com
tion. Experiments in steady-state agree with the theory.@DOI: 10.1115/1.1387020#
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1 Introduction
The relationship between the external loads and the spe

work of fractureR ~fracture toughness! for j strips tearing and
peeling~e.g., as shown in Fig. 1~a!! can be obtained from~@1,2#!

(
i 51

j

Fidui1(
i 51

j

~Ml ! idu i5(
i 51

j

~dL i1dG i !1(
i 51

j

RidAi ,

(1)

whereF and Ml are the external force and moment, anddu and
du are the incremental displacement and rotation angle at
loading point,dL anddG are the incremental elastic and plas
work in each strip,dA is the incremental area of fracture surfa
and RdA the incremental fracture work. The strip is common
treated as a cantilever in the analysis for tearing and peeling
shown in Fig. 1~b!, with axial stretching being neglected~@2–6#!.

For moment loading at the tip of the cantilever, the analysis
deformation is quite straightforward and the elastic and pla
work is easy to calculate, since the bending moment and curva
are the same at any point of the cantilever. For tearing and pee
along self-similar paths~without the change of strip cross section!,
the relationship between the moment and fracture toughnes
given in Eq.~14a! by Liu et al.@2# for elastic deformation and, fo
strips in elastoplastic deformation, it can be obtained from E
~10b! and ~14b! in Liu et al. @2#. However, experimentally, it is
very difficult to achieve a pure bending condition: A double rol
experimental system was used by Yu et al.@6# and Muscat-Fenech
and Atkins@5# to test the tearing fracture toughness of thin pla
but it was found that the tear legs disengage from the rolle
form their own natural radii of curvature and the curvature is
longer constant near the tearing front. For tearing and peelin
thin plate with a concentrated force at the end of the strip,
analysis of strip deflection is very complicated since it is usua
associated with large deflections~@2,7#!. Even so, the full analysis

1Current address: Advantica Technologies, Ltd., Ashby Road, Loughborough
icestershire LE11 3GA, UK.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan.
1998; final revision, May 17, 2001. Associate Editor: J. W. Ju. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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has been presented by Liu et al.@2# for the tearing and peeling o
an end-loaded cantilever strip, to include both the transient c
ditions of increasing force during tearing from initial loading, u

Le-

1,
the
nt of
ill
EFig. 1 „a… tearing and peeling of thin sheets, „b… deformation of
strip during the tearing and peeling propagation
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to steady-state tearing at constant force. The steady-state cond
will be attainedproviding the ‘‘trouser leg’’ is long enough~i.e., a
long enough starting length! or that the tear propagates to a su
ficiently long length. Magnitudes of the length of tear and p
required to achieve a steady state are discussed later in this p
The steady-state condition for tearing and peeling appears to
just after the rotation angle of the cantilever at the loading poin
the end of the beam, reaches the force loading angle~f in Fig.
1~b!! whence it remains unchanged subsequently. This obse
tion has important implications, since for an increment of tear
lengthdL, ~i! the work due to the external forceF is FdL, ~ii ! the
incremental elastic and plastic work in the strip is equal to
work of the newly increased beam lengthdL bending with curva-
ture from zero to its maximum value and returning to zero, a
~iii ! the incremental fracture work is equal to the fracture tou
ness times the increased fracture surface associated withdL.
Therefore, instead of calculating the change of elastic and pla
work along the whole cantilever~as done by Liu et al.@2#!, only
the work in the newly created part of the stripdL during steady-
state fracture propagation is needed in Eq.~1! to obtain the rela-
tionship between the external force and the fracture toughnes

The present paper discusses the relationship between the e
nal force and fracture toughness in steady-state tearing and
ing thin sheets made of elastoplastic material with linear hard
ing shown in Fig. 2. It is assumed that all strips are identical a
tearing and peeling occurs in a self-similar manner, i.e., there i
‘‘tearing to a point’’ ~@5#! so that the cross section of the strip
remains the same throughout. Figure 3 shows the arrangeme
~a! two strips tearing~‘‘trouser tearing’’! and ~b! two strips peel-
ing. The relationship between bending moment and curvature
an elastoplastic cantilever is given by Liu et al.@7#; the relation-
ship between the fracture toughness and curvature in the frac
front is obtained by Liu et al.@2# and the magnitude of this cur
vature is maximum during fracture propagation.

Fig. 2 Stress-strain relationship of strip material

Fig. 3 The arrangement for two strips tearing and peeling
Journal of Applied Mechanics
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2 Elastic and Plastic Work
When a beam lengthdL is bent by a momentM with curvature

changes from zero todu/dS, the elastic workEb is

Eb5E
0

u

Mdu5E
0

du/dS

MdS du

dSDdL5
Me

L0
E

0

k

mdkdL, (2a)

where

u5
du

dS
dL, (2b)

k5
du

ds
5L0

du

dS
, (2c)

s5
S

L0
, (2d)

m5
M

Me
. (2e)

L0 is the original length of beam~the length before the fracture
starts to propagate!, S is the intrinsic coordinate of a section,Me is
the bending moment at the elastic limit and equalsBH2sy/6 for
rectangular cross section,B and H are the width and depth o
beam, respectively, andsy is the yield stress.

For an elastoplastic material with linear strain hardening,
relationship between nondimensional bending momentm and cur-
vaturek was obtained by Liu et al.@7#, viz:

~i! elastic deformation,k<b, or a51

m5
k

b
, (3a)

~ii ! plastic loading,k.b

m5
1

2
~12a!~32b2k22!1

ak

b
, (3b)

~iii ! elastoplastic deformation with partial linear unloadin
k>~12a!k*2~22a!b

m5
1

2
~12a!S 32b2k* 2222

k*

b D1
k

b
, (3c)

~iv! elastoplastic deformation with partial reverse plastic loadi
k,~12a!k*2~22a!b

m5
1

2
~12a!~22a!3b2A222

aA

b
2

1

2
~12a!b2k* 22

2
3

2
~12a!2, (3d)

in all of which four relations

b5
MeL0

EI
, (3e)

A5~12a!k* 2k. (3f)

E is the Young’s modulus,a is the ratio of plastic modulus to
elastic Young’s modulus andk* is the maximum nondimensiona
curvature when the unloading starts.

Substituting Eqs.~3! into Eq. ~2a!, we obtain
~i! for 0<k<b, or a51

Eb5
MedL

2L0

k2

b
, (4a)

~ii ! for b<k<k*
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Eb5
MedL

2L0
Fa

k2

b
13~12a!k1~12a!b2k2123~12a!bG ,

(4b)

~iii ! for ~12a!k*2~22a!b<k<k*

Eb5
MedL

2L0
H k2

b
1~12a!F S 32b2k* 2222

k*

b Dk

1
k* 2

b
12b2k* 2123bG J , (4c)

~iv! for k,~12a!k*2~22a!b,k*

Eb5
MedL

2L0
H a

b
A21~12a!F ~22a!3b2A212b2k* 22k

23~12a!k1a
k* 2

b
13~12a!~22a!k* 12b2k* 21

23~524a1a2!bG J . (4d)

Therefore, when the part of beam of lengthdL is bent with
curvature changing from zero tok* then returning to zero, we
have

Eb50, for k* <b, or a51 (5a)

Eb5
MedL

2L0
~12a!Fk* 2

b
12

b2

k*
23bG , for b,k* <

22a

12a
b

(5b)

and

Eb5
MedL

2L0
H ~12a!Fa~22a!

k* 2

b
13~12a!~22a!k*

23~524a1a2!bG1@~22a!312~12a!#
b2

k* J ,

for k* .
22a

12a
b. (5c)

Equations~5! show that when the curvature of a part of bea
dL changes from zero to a valuek*<b then returns to zero, al
the elastic energy in the beam is released withEb50. However,
after it enters plastic deformation withk*.b, a reverse bending
moment is required to bend the beam back to zero curvature
which the associated workEb.0.

3 External Force F and Fracture ToughnessR
It has been shown~@2,4#! that during steady-state fracture th

external force at the tip of a strip is a constant. It appears that
incremental elastic (dL) and plastic (dG) work in a strip is equal
to that of the newly created strip lengthdL bending with curva-
ture from zero to the maximum valuek* and returning to zero,
wheredL1dG5Eb in Section 2 above, ordL1dG5Eb in Eq.
~1!. It is clear~@2#! that the curvature at the fracture front increas
from zero to the valuek0 for fracture and then decreases duri
propagation, if the fracture path is self-similar and the fract
toughness is constant. Under these conditions, the maximum v
of curvaturek* is a constant andk* 5k0 along a newly created
part of beamdL due to fracture. The relationship between t
external force and the fracture toughness from Eq.~1! is

f 5
EbL0

MedL
1

1

2
Db, (6a)

for j strips,n1 tearing fracture surfaces andn2n1 peeling fracture
surfaces, where
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f 5
FL0

Me
, (6b)

D5
6@n1r t1~n2n1!r p#

j
, (6c)

r t5
ERt

Bsy
2 , (6d)

r p5
ERp

Hsy
2 , (6e)

Eb5dL1dG. (6f)

Rt andRp are the tearing fracture and peeling fracture toughne
respectively.

The relationship between curvature and fracture toughnes
given in Eqs.~10! of Liu et al. @2# with k05k* and

D5
k* 2

b2 for k* <b, or a51 (7a)

and

D5a
k* 2

b2 22~12a!
b

k*
13~12a!, for k* .b. (7b)

The relationship between the external forcef and the fracture
toughnessD for steady-state fracture process can be obtai
from Eqs.~5!, ~6!, and~7! with Eb5dL1dG.

Whenk*.b, Eq. ~7! gives

k*

b
5

2

32D
for a50 (8a)

and

k*

b
5F12a

a
1ADG1/3

1F12a

a
2ADG1/3

for a.0 and D>0

(8b)

or

k*

b
52A 1

3a
@D23~12a!#cosv, for a.0 and D<0

(8c)

where

D5F3~12a!2D

3a G3

1
~12a!2

a2 (8d)

and

v5
1

3
cos21F 3~12a!

D23~12a!
A 3a

D23~12a!
G . (8e)

~a! For elastic deformationk*<b, f <b/2, or a51.
Whenk*<b, or a51, dL1dG5Eb50 and Eq.~6a! gives

f 5
1

2
Db (9a)

and

D5
2 f

b
. (9b)

In this case, Eq.~7a! with k*<b givesD<1, therefore,f <b/2.
~b! For b,k*<~22a!b/~12a! or b/2, f <b(22a)2/2(1

2a)2.
If k*.b, the strip enters elastoplastic deformation before u

loading starts. Substituting Eqs.~5b! and ~7b! into Eq. ~6a! with
Eb5dL1dG, we have
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f 5
1

2
~12a!Fk* 2

b
12

b2

k*
23bG

1
b

2 Fa
k* 2

b2 22~12a!
b

k*
13~12a!G

5
k* 2

2b
(10a)

wherek* /b is given by Eqs.~8!, and

D5a
2 f

b
22~12a!Ab

2 f
13~12a!. (10b)

Equation~9a! with k*<~22a!b/~12a! gives

f <
~22a!2b

2~12a!2 . (10c)

~c! For k*.~22a!b/~12a! or f .b(22a)2/2(12a)2.
Equations~5c!, ~6a!, and~7b! give

f 5
b

2 H e
k* 2

b2 13~12a!2~22a!
k*

b
23~12a!~22a!2

1~22a!3
b

k* J (11a)

and

D5au213~12a!22~12a!u21, (11b)

where

u5
1

12F121
2 f

b
1AS 2 f

b D 2

124
2 f

b
248G , for a50

(11c)

u5
1

e H 2A~12a!~22a!21
e

3

2 f

b
cosc2~12a!2~22a!J ,

for 0,a,1 (11d)

c5
p

3
2

1

3

3arccos5 ~22a!3@11~12a!3#1~12a!2~22a!e
2 f

b

2AF ~12a!~22a!21
e

3

2 f

b
G3 6 ,

(11e)

e5a1a~12a!~22a!512~12a!3 (11f)

andk* /b is given by Eq.~8!.

4 Calculation and Discussion
During the self-similar tearing and peeling of thin sheet, t

rotation angle at the tip of strips,u l , may reach and subsequent
remain at the force loading anglef, shown in Fig. 1~b!, if speci-
mens are longer enough. In this case, tearing and peeling bec
a steady-state process with constant external force. Under t
conditions when the beam increases fromL to L1dL due to frac-
ture propagation, the unloading work along the whole beam
equal to that of rebending the newly created lengthdL from
k5k* to k50. Therefore, instead of calculating the deformati
along the whole beam with a great deal of complexity, the inc
mental work in each strip can be obtained merely from the be
ing and rebending back of the newly created beam lengthdL.

The beam length corresponding tou l5f will depend on the
material properties, beam cross-section size, and the frac
Journal of Applied Mechanics
he
y

mes
ese

is

n
re-
nd-

ture

toughness. The stiffer the beam, the longer the length neede
achieve the steady-state process; and, the smaller the valu
fracture toughness, the longer the length required to achiev
steady state. The relationship between the beam length for st
state and the fracture toughness is plotted in Fig. 4~a! for elastic
materials~a51!. Similar calculations were performed on beam
made of bilinear elastic materials, i.e.,a,1 ~as for a plastic ma-
terial, but where the unloading path reverses down the load
path towards the origins50 at «50!. It shows that the relation-
ship is almost the same as that shown in Fig. 4, except fora50
with a sharp drop aroundD53.

Even with the external force increasing,unloadingmay occur
in a cross section of beam at large deflections due to the sho
ing moment arm~@7#!. For elastoplastic material, the require
length for steady-state fracture is less since the curvature in
plastic unloading region is larger than that of bilinear elastic m
terials. Equation~3c! with k*5constant shows that the mome
rate ]m/]s is the same as that of elastic beams along the be
length created by fracture, 0<S<L2L0 . When the steady-state
fracture, which originates withu5u l5f at the beam tip, propa-
gates tou5f at S5L2L0 , a beam length relationship betwee
elastic beams and elastoplastic beams is obtained. The deriv
is given in the Appendix and plotted in Fig. 4~b!. It shows that the
required beam length decreases with decrease ofa. For an esti-
mated~or known! fracture valueD with load force anglef5p/2,
we can obtain the required elastic beam length for steady-s
fracture from Fig. 4~a! and the relationship between elastic a
elastoplastic beam length, (Lp2L0)/(Le2L0) from Fig. 4~b! with
a given value ofa. Therefore, the required length of a test spe
men made of elastoplastic material can be estimated from
combination of Fig. 4~a! and Fig. 4~b!, especially when the origi-
nal length of beam~the length before the fracture starts to prop
gate!, L0 , is relatively small.

The relationship between the fracture toughness and the e
nal force is given in equations~9b!, ~10b!, and~11b!, or

D5
2 f

b
, for

2 f

b
<1, or a51 (12a)

D5a
2 f

b
22~12a!Ab

2 f
13~12a! for 1,

2 f

b
<

~22a!2

~12a!2

(12b)

and

D5au213~12a!22~12a!u21, for
2 f

b
.

~22a!2

~12a!2

(12c)

where

u5
1

12F121
2 f

b
1AS 2 f

b D 2

124
2 f

b
248G , for a50

(12d)

u5
1

e H 2A~12a!~22a!21
e

3

2 f

b
cosc2~12a!2~22a!J ,

for 0,a,1 (12e)

c5
p

3
2

1

3

3arccos5 ~22a!3@11~12a!3#1~12a!2~22a!e
2 f

b

2AF ~12a!~22a!21
e

3

2 f

b
G3 6

(12f)
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Fig. 4 „a… The required length for steady-state tearing and Õor peeling specimens made of elas-
tic materials „for loading angle fÄpÕ2…, „b… relationship between elastic and elastoplastic beam
length required for steady state tearing and Õor peeling
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It is clear that the relationship is only related to the mate
properties (E,a,sy) and dimensions of strips~width B and depth
H!. During experimental tests, these parameters are usu
known. Therefore, the fracture toughness follows directly fro
experimental values of external force and can be easily obta
from Eqs. ~12!. The variation of the nondimensional fractu
toughness,D ~given by Eq. 6~c!!, with the nondimensional exter
nal force, 2f /b52FEI/Me

2, is plotted in Fig. 5 for different val-
ues of a. It shows that greater fracture toughness,D, requires
increased external force. Figure 5 also shows that with lowe
ratio a of plastic modulus to elastic Young’s modulus in the tro
ser materials, the load increases for the same toughness. Fora50,
SEPTEMBER 2001
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D→3 when the curvature tends to infinity, or when the bend
moment tends to the value for plastic collapse, i.e.,M
5BH2sy/4. Therefore, whenD is about 3 in magnitude, a sma
increase in fracture toughness produces a big change of curv
and the external force increases sharply~D cannot be larger than 3
for a perfectly plastic material!. We employ Fig. 5 to find the
value of fracture toughness, from the known external force
experiments on known materials of given strip dimensions.

Trouser tear tests shown in Fig. 3~a! are often employed to
obtain the tearing fracture toughnessRt . If the strip deformation
is in the elastic range~a51!, Eq. ~12a! with j 52, n5n151 and
D53ERt /Bsy

2 gives the well-known relation

Rt5
2F

H
, (13a)
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Fig. 5 Variation of the mixed nondimensional fracture toughness with the nondimensional
external force, 2 f bÄ2FEIÕMe
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since

2 f

b
5

6FE

BHsy
2 5D5

3ERt

Bsy
2 . (13b)

The above equations are only valid whenB>3ERt /Bsy
2. Unfor-

tunately, whenB is large, twist of the legs may affect the te
results.

For elastoplastic strip deformation at smaller values ofB, the
Rt –F relationship can be obtained from Eqs.~12b!–~12f! with
D53ERt /Bsy

2 and 2f /b56FE/BHsy
2. Figure 6 shows the com

parison between the theoretical results obtained from Eqs.~12!
~solid lines! and experimental results~@3,4#!. These tearing tests
were steady state. The theoretical results from Eqs.~12! fit well
with experimental results when the fracture toughness was ch
as Rt544 kJ/m2 for steel ~a50.00234 and b50.45!; Rt

552 kJ/m2 for aluminum ~a50.00551 andb50.37714!; and Rt

5120 kJ/m2 for brass~a50.12025 andb50.31634!. Instead of
very complicated and lengthy computing calculations for the d
of Fig. 9 in Liu et al.@2# only a few minutes of computing time
were used to obtain the data in Fig. 6.

The method of plotting force/thickness versus width of st
employ in Fig. 6 had been used by, for example, by Mai a
Cotterell@3# and Atkins and Mai@1# to obtain the fracture tough
ness using a simple analysis for tearing which predicted thatF/H
increases linearly with the increase of strip widthB. However, as
shown in Fig. 6, experimental data over much wider ranges oB
than used by these authors show thatF/H is not a linear function
of B, nor does it always increase with increase ofB. Furthermore,
even when the nonlinear shape ofF/H versusB plots shown in
Fig. 6 had been correctly treated by Liu et al.@2# the values of
fracture toughness had to be obtained by fitting the experime
data to the algebra by a trial and error method to find the tou
ness which gave a best fit. It is clear from the present analysis
the fracture toughness can be found directly from Eqs.~12!, or
from employing some master graphs similar to Fig. 5, using o
the force obtained from experimental results.

It should be emphasized thatF here is thesteady-stateforce for
tearing and/or peeling. Using the external force at theinitiation of
fracture in Eqs.~12a! and~13a! will overestimatethe tearing frac-
lied Mechanics
t

sen
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nd

f

ntal
gh-
that
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Fig. 6 Variation of the external force Fm ÕH with the beam
width B . : Eqs. „9…, „10…, and „11…; ¿: experimental result
of steel from †2‡; s: 5251 aluminum alloy „†2‡… and d: brass
„†3‡….
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Fig. 7 Variation of nondimensional external force f with nondimensional dis-
placement at the tip of beam y l for elastic tearing and Õor peeling. fÄpÕ2; d: ini-
tiation point of fracture.
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ture toughness in elastic fracture, if the rotation angle at the tip
the leg,u l , is less than the force loading angle,f, ~i.e., the origi-
nal length of the strip,L0 , is not long enough or the fractur
toughness is too small! at the beginning of fracture propagatio
Figure 7 shows that after initiation in elastic fracture, the for
will decrease to the constant~steady-state! value during propaga-
tion. For elastoplastic materials it is not possible to say whet
the use of the initiation force will overestimate or underestim
the true fracture toughness: as shown in Figs. 6 of Liu et al.@2#
relating to elastoplastic propagation, before the external fo
reaches the steady-state value, it may continuously decreas
small values ofD; decrease then increase for intermediate val
of D; or continuously increase for bigD.

5 Conclusions
Self-similar tearing and/or peeling of thin sheets~without

change of strip cross section! occurs in steady state with consta
external force when the ‘‘legs’’ of the testpieces are long enou
In this case, the incremental elastic and plastic energy in the
formed strip is equal to that of the newly created lengthdL with
curvature change from zero to a maximum valuek* and returning
to zero. The relationship between the external force and frac
toughness depends only on the material properties~a, E, andsy!
and cross section~B and H!. For a given value of the externa
force, the fracture toughness can be obtained from Eqs.~12!, or
from a master graph like Fig. 5 in this paper. Since, in elas
tearing and peeling, the initiation load is greater than the stea
state load, true toughness is overestimated if the load at
cracking is used. In elastoplastic tearing and/or peeling,
steady-state load may be smaller or greater than the initia
load, depending on the value of the nondimensional frac
toughnessD. In consequence, it is not possible to say in this c
whether the toughness will be less or greater than that obta
using the initiation load in place of the steady-state load.

Appendix
For elastoplastic materials, Eq.~3c! with k*5constant gives

]m

]s
5

1

b

]k

]s
5

1

b

d2u

ds2 (A1)

in the newly created beam length due to fracture, 0<S<L2L0
shown in Fig. 1~a!, whenk>~12a!k*2~22a!b. Equation~12a!
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shows that the moment rate along the beam is the same as th
elastic beams. The moment given from the equilibrium condit
is ~@7#!

m5 f cosf~xl2x!2 f sinf~yl2y!, (A2a)

or

]m

]s
52 f sin~f2u!. (A2b)

The curvature,k, can be obtained from Eqs.~A1! and ~A2b!,
which is

k5
du

ds
5Ak* 212 f b@cosf2cos~f2u!#. (A3a)

Therefore, the length from the fracture fronts is

s5E
0

u du

Ak* 212 f b@cosf2cos~f2u!#
, (A3b)

wheref is the loading angle of the external force shown in F
1~a!, k* is the curvature at the fracture front andk* 5ke* is given
by Eq. ~7a! for elastic material, ork* 5kp* is given by Eq.~7b!
for elastoplastic material.

Whenu5f andk50 at S5L2L0 , Eq. ~A3a! and ~A3b! give

2 f b5
k* 2

~12cosf!

and

k*
L2L0

L0
5E

0

f du

A11@cosf2cos~f2u!#/~12cosf!
.

(A4)

Equation ~A4! is valid for both elastic beams and elastoplas
beams withk>~12a!k*2~22a!b in the newly created beam
length due to fracture 0<S<L2L0 . For the same force loading
anglef, the right-hand side of Eq.~A4! is constant. Therefore, we
have

Lp2L0

Le2L0
5

ke*

kp*
, (A5)
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whereLe andLp are total elastic and elastoplastic beam lengt
ke* andkp* are the curvatures for elastic and elastoplastic mat
als and can be obtained from Eqs.~7a! and~7b!, respectively, with
a given value of fracture toughness.
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On the Steady Motions of a
Rotating Elastic Rod
In this paper, a model for the deformation of a rotating prismatic rod-like body is de
oped and analyzed. The novel feature of the model is its incorporation of the Po
effect. As a result, it provides realistic solutions for the deformed states of steadily rot
rods. The model presented in this paper is also simplified to a nonlinear version
classical model for rotating rods. Numerical continuation is used to solve the boun
value problems associated with these models.@DOI: 10.1115/1.1381003#
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1 Introduction
Motivated in part by applications in turbomachinery and he

copter rotors, there have been numerous studies of the dyna
of rotating rods~cf. Antman @1#, Leissa@2#, Rao @3#, and refer-
ences therein!. A major portion of this work is concerned with th
vibrational response of an elastic rod which is being whirled ab
a fixed axis~cf. Fig. 1!. The vibrations of interest are usuall
considered to be small amplitude disturbances which are supe
posed on the steady deformation of the rod induced by the r
tion. In general, the partial differential equations governing
vibrations are nonhomogeneous and depend on the steady mo
These equations have been used to show the variation of the
ural frequencies as the rotational speed increases~cf. Wright et al.
@4# and references therein!. Similar models have also been pro
posed to analyze this issue in ever broadening types of rods
boundary conditions.

If one considers the system shown in Fig. 1 and supposes
the rod is composed of an isotropic elastic material, then it is e
to visualize that as the rod rotates, its length will increase. F
thermore, this increase in length will, because of the Poisson
fect, be accompanied by a contraction of the cross section. H
ever, the model most frequently used in the literature to predict
steady motion only considers the longitudinal displacement.
shall refer to this model as the uniaxial model. If a linear uniax
stress-strain constitutive relation is used to establish this mo
then Bhuta and Jones@5# and Brunelle@6# observed that above
certain critical speed of rotation, solutions to this model cease
exist. Hodges and Bless@7# later showed how this lack of exis
tence could be eliminated using nonlinear constitutive relation

In contrast to the vast majority of existing works, in the pres
paper we determine the steady motions of the rod by usin
model which accommodates the Poisson effect. The resu
model is based on a geometrically exact elastic rod. The resul
our work provide a more realistic solution to this problem. F
sufficiently large angular speeds, we also find physically unre
istic solutions; however, their nature is not the same as th
found in the uniaxial model mentioned earlier. We also point
how certain modifications to the constitutive equations can

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
16, 2000; final revision, January 2, 2001. Associate Editor: N. C. Perkins. Discus
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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used to eliminate the existence of these solutions. By follow
the earlier work of O’Reilly and Turcotte@8#, the steady motions
we calculate can be used to determine the equations governin
small-amplitude vibrations of the rotating rod.

The rod theory on which we base our model was develope
a series of works by A. E. Green and P. M. Naghdi and severa
their co-workers dating to 1966~cf. @9–11# and references
therein!. It is a Cosserat rod theory which includes, as particu
constrained cases, most existing rod theories. Green and Nag
rod theory has been used to examine various problems where
Poisson effect is important. These include contact proble
~@12,13#! and wave propagation and vibration~@14,15#!.

An outline of this paper is as follows. First, a brief discussion
the rod theory is contained in Section 2. Then, in Section 3,
model for the whirling rod is presented. Most of the developme
in Section 3 follow@8#. In Section 4, the boundary value proble
governing the steady motions is discussed. Next, in Section 5
steady motions predicted by the model are presented. Becaus
boundary value problem involves a stiff set of ordinary differe
tial equations, finding solutions numerically proved to be a de
cate matter. The numerical continuation algorithm for bound
value problems used by AUTO97@16# was employed. As dis-
cussed by Doedel@17#, a numerical continuation method is pa
ticularly suited to our needs.2 We discuss the uniaxial model in
Section 6. There, we show how it can be obtained from the mo
discussed in this paper, and how it relates to other models w
have appeared in the literature. The closing section of this pa
discusses future work.

2 Preliminaries on the Model Development
The whirling rod-like body is modeled in this paper as a ma

rial curve and two directorsda .3 That is, we are using a Cosser
~or directed! rod theory to model the body. As shown in Fig. 2, th
reference state of the material curve is chosen to coincide with
line connecting the centers of area of each cross section of
undeformed rod. The points on this line are identified by the a
length coordinatej. In addition, the reference values of the dire
tors,D1(j) andD2(j), are chosen to be unit orthonormal vecto
which span the cross section. In the deformed state of the ro
time t, the position vector of a point of the material curve
defined by the position vectorr5r (j,t) and the directors are
vector-valued functions:da5da(j,t). Here, the coordinatej is

st
sion
part-

92,
the

2An introduction to, and an overview of, continuation methods can be found
Seydel@18#.

3In this paper, lowercase Latin indices range in value from 1 to 3 while lowerc
Greek indices range from 1 to 2. These indices are summed when repeated. T
of vectors$Ei% denotes a fixed right-handed Cartesian basis.
© 2001 by ASME Transactions of the ASME
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used as a convected coordinate for the present configuratio
contrast to other rod theories, both the magnitude and directio
the directors are free to change.

To determine the equations governingr andda , it is necessary
to postulate balance laws and constitutive relations. These ca
found in Naghdi@10#. We recall, from his review article, that th
nontrivial balance laws for an elastic rod are the balance of lin
momentum and two balances of director momentum:

n81lf5l r̈1lybd̈b ,

ma81l la2ka5lya r̈1lyabd̈b . (1)

In these equations, the superposed dot is used to denote the p
derivative with respect tot, while the prime denotes the partia
derivative with respect toj. Furthermore,n is the contact force,
ma are the contact director forces,ka are the intrinsic director
forces, f is the assigned force per unit mass, andla are the as-
signed director forces per unit mass. The constant inertia par
eters are the mass per unit undeformed length,l, and the inertias,
ya andyab5yba. All of the aforementioned fields can be place
in approximate correspondence with the fields of thr
dimensional continuum mechanics. We shall shortly use these
respondences to prescribe the inertia parameters.

To close Eq.~1!, it is necessary to specify constitutive relatio
for the force fields. Here, we assume that the rod is elastic wi
strain-energy per unit lengthlc. This energy is assumed to be
function of the following 12 independent strains:

g i j 5di•dj2Di•Dj , ka i5da8•di2Da8•Di , (2)

whered35r 8. That is,lc5lĉ(g i j ,kak). The resulting constitu-
tive relations can be written in the form

n5l
]c

]r 8
, ka5l

]c

]da
, ma5l

]c

]da8
. (3)

Specifyingl, ya, yab, c, f, andla, and substituting~3! into ~1!, a
set of nine scalar partial differential equations for the nine sc
fields r andda are obtained.

Fig. 1 A rod-like body rotating with an angular speed V about
the E1-axis. The angle u of rotation is such that u̇ÄV.

Fig. 2 The reference configuration of the rod-like body
Journal of Applied Mechanics
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3 The Rod and Its Motions
In this paper, the reference state of the rod-like body is a p

matic, homogeneous parallelepiped whose cross sections a
height h and width w, and whose length isL ~cf. Fig. 2!. The
steady motions of interest here are such that the deformed sta
this body, when viewed by an observer corotating with an angu
velocity VE1 , appears to be in a state of equilibrium. The cro
sections and centerline of the steadily rotating body will be
formed. Specifically, the motion of the rod modeling the body
assumed to be of the form

r5xPD3 , d15d1PD1 , d25d2PD2 , (4)

where x5x(j), da5da(j), Di5Ei , and the rotation tensorP
corresponds to a rotation about theE1-axis ~cf. Fig. 1! with a
constant~counterclockwise! speedV.4 It is straightforward to
show that, for the motion~4!,

r̈52V2xPE3 , d̈150, d̈252V2d2PE2 . (5)

Physically, the motion~4! is such that material planes which a
normal to the centerline in the reference configuration of the bo
remain normal in the present configuration. However, the wi
and height of these sections will have changed towd2 andhd1 ,
respectively. To examine whether the motion~4! can be sustained
in a particular rotating rod depends intimately on the refere
geometry and material of the rod, and the applied forces acting
the rod. We now turn to specifying these quantities.

For the body of interest, we find, using the prescriptions d
cussed in Green and Naghdi@11#, that

l5r0hw, ly115
r0h3w

12
, ly225

r0w3h

12
, (6)

while y1, y2, andy125y21 are zero. Here, the constant mass de
sity per unit volume of the rod-like body isr0 . While the rod is
whirling, we assume that external body forces~such as gravity!
and tractions on its lateral surface are absent. Consequenf
5 l15 l250.

Pertaining to the material of the rod, we shall assume that
rod-like body is composed of a homogeneous isotropic ela
material. Following Green, Laws, and Naghdi@19#, the strain-
energy function of the rod is assumed to be a quadratic functio
the strains:lc5lc1 . The functionc1 is given by

2lc15k1g11
2 1k2g22

2 1k3g33
2 1k7g11g221k8g11g331k9g22g33

1
k4

4
~g121g21!

21k5g23
2 1k6g13

2 1k10k11
2 1k11k22

2

1k12k12
2 1k13k21

2 1k14k12k211k15k23
2 1k16k13

2

1k17k11k22. (7)

Assuming that the strains are infinitesimal, the consta
k1 , . . . ,k17 for various rods were determined in a series of wor
by comparing exact solutions of the rod theory to correspond
solutions from three-dimensional linear elasticity.5 The resulting
values of the constants are functions of Poisson’s ration, Young’s
modulusE, and the geometric properties of the undeformed thr
dimensional rod-like body that the rod theory is modeling. Ho
ever, in contrast to these works, here the strains will be assu
finite. For future reference, we recall that Green and Naghdi@11#
established that

k15k25k35
Ewh~12n!

4~11n!~122n!
,

4In particular, PE15E1 , PE25cos(u)E21sin(u)E3 , and PE35cos(u)E3
2sin(u)E2 .

5This series of works was summarized and critiqued by O’Reilly@20#.
SEPTEMBER 2001, Vol. 68 Õ 767
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2n

12n
k1 ,

k105
Eh3w

24~11n!
, k115

Ehw3

24~11n!
, k1750. (8)

The values of the remaining eight constants are not of inte
here.

With the assistance of~4!, ~7!, and~8!, we find from~3! that

n52k3S x8x8211
n

12n
~g111g22! D x8PE3 ,

k152k3S g111
n

12n
~g221g33! Dd1E11k10k11d18E1 ,

k252k3S g221
n

12n
~g111g33! Dd2PE21k11k22d28PE2 ,

m15k10k11d1E1 ,

m25k11k22d2PE2 . (9)

It is important to note that these expressions are only valid for
steady motions that we are considering.

4 The Boundary Value Problem
For the rod of interest, the endj50 is assumed to be fixed

while the endj5L is assumed to be free of tractions. In th
model, the hub radiusr is assumed to be zero. For this cas
substituting~5!, ~6!, and~9! into ~1!, we find that six of the nine
equations are identically satisfied. The three remaining equat
simplify to three scalar ordinary differential equations forx(j)
andda(j).

Omitting details, the three equations can be expressed in a c
pact dimensionless form:

d2u

ds2 52

n

12n S dg11

ds
1

dg22

ds D S du

ds
11D12v2~u1s!

3S du

ds
11D 2

211
n

12n
~g111g22!

,

d2g11

ds2 5
24

122n S L2

h2D ~~12n!g111n~g221g33!!,

d2g22

ds2 5
24

122n S L2

w2D ~~12n!g221n~g111g33!!24S 12n

122n Dv2,

(10)

where

g115d1
221, g225d2

221, g335S du

ds
11D 2

21. (11)

In ~10!, the following dimensionless quantities were used:

s5
j

L
, u5

x2j

L
, v5VAL2r0~122n!~11n!

E~12n!
. (12)

Here,Lu represents the axial displacement of the centerline of
rod.

Supplementing~10! are two sets of boundary conditions. F
the fixed end,

u~s50!50, g11~s50!50, g22~s50!50. (13)

At the free end,n5ma50. With the assistance of (9)1,4,5, we
find that these conditions imply that

g33~s51!1
n

12n
~g11~s51!1g22~s51!!50,
768 Õ Vol. 68, SEPTEMBER 2001
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dg11

ds
~s51!50,

dg22

ds
~s51!50. (14)

In summary, determination of the steady motions has been
duced to finding solutionsu(s), g11(s), andg22(s) of ~10! which,
for a givenV, satisfy the boundary conditions~13! and ~14!.

Wheng11521, d150 and the height of the rod-like body ha
shrunk to zero. Below this value ofg11, a real-valuedd1 does not
exist. Related remarks apply tog22. For the axial displacement
when du/ds521 for an interval ofs, the centerline of the rod-
like body in this interval has shrunk from a finite length to zer
Consequently, the following restrictions are used to distingu
physically realistic solutions:

g11.21, g22.21,
du

ds
.21. (15)

For the steady motions of interest in this paper, the first two
teria will be violated whenv is sufficiently large.

5 The Steady Motions
We now turn to examining the steady motions predicted by

model discussed previously. Our results were obtained us
AUTO97 and its continuation algorithm. To use this algorithm,
is necessary to have a solution to the boundary value prob
Fortunately, whenv50, the trivial solution exists:

u~s!50, g11~s!5g22~s!50. (16)

This solution allows us to usev as the bifurcation parameter fo
the continuation method. In essence, we are usingv to construct a
homotopy.

For the case of a square rod, solutions to the boundary v
problem are presented in Fig. 3 for various values ofv. One

Fig. 3 The dimensionless axial displacement u „s … and lateral
strains g11„s … and g22„s … for various values of v: „i…, v2Ä0.5;
„ii …, v2Ä1.0; „iii …, v2Ä1.5; „iv …, v2Ä2.0, and „v…, v2Ä2.64. For
these results, nÄ0.3 and a rod whose length is ten times its
height and width was considered: h ÕLÄw ÕLÄ0.1.
Transactions of the ASME
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immediately notices from this figure that severe lateral stra
~g11, g22, k11, andk22! are encountered close to the fixed en
We shall refer to this region as the boundary layer. Its appeara
in our numerical works is a consequence of~10! being a stiff
system of differential equations. We note in particular that asv
approaches a critical valuevcrit the width of the cross section
near s50.05 tends to zero. Forn50.3, we found thatvcrit
'A2.64. Whenv is greater thanvcrit , the solution of the bound-
ary value problem is physically meaningless. It is also evide
from Fig. 3, that the lateral deformation isnot a negligible effect.

The representative case ofg22(s) for a rectangular rod whose
height is twice its width is shown in Fig. 4. The behavior
g11(s) and u(s) for this rod are qualitatively similar to thos
shown in Fig. 3 and are not presented here. For this rod, we
that the lateral straing22 is larger than in the square case. Indee
the steady motion predicted by the model whenv252.64 is not a
physically valid solution. Related remarks apply to a rectangu
rod whose height is half its width. Indeed, the numerical res
for g11(s) for this case are qualitatively similar to those presen
for g22(s) in Fig. 4. In general, reducingh andw while keepingL
constant has the effect of increasing the extreme values of
lateral strains and reducing the size of the boundary layer.

There are two consequences to our choice of strain-energy~7!.
First, as shown numerically, it implies that the boundary va
problem will have a unique solution for each value ofv. This
uniqueness would probably be eliminated if the strain energy c
tained quartic terms in the strains. The second consequence o
constitutive selection is that it does not inhibit necking in t
boundary layer. To see an instance of this effect, we subst
g115g22521 into ~9! and note that this deformation~where the
cross sections of the rod are deformed to have zero area! can be
achieved with finite forces. Clearly, this is unacceptable. To eli
nate this behavior, one could add terms tolc1 to penalize such
deformations. These terms would have the functional forms

C~z!5m log~11z!4, (17)

wherem is constant andz denotes any of the strainsg i j andkak .
BecausedC/dz(z50)50, the addition of these terms does n
entail a lengthy re-evaluation ofk1 , . . . ,k17. However, they com-
plicate the ordinary differential equations for the mod
significantly.6

6 The Uniaxial Model
As mentioned previously, the most commonly used mode

the literature does not consider the Poisson effect. To illust
how this uniaxial model relates to our developments, we now t
to presenting such a model. The first model we present is non
ear and it is then specialized to the classical linear model. Th
are several methods for establishing the nonlinear model. The
method, which is discussed in the Appendix, models the rod-
body using a string theory. Alternatively, the model can be

6The interested reader is referred to Antman@1# and Antman and Carbone@21# for
additional discussions on necking and growth conditions in nonlinearly elastic r

Fig. 4 The dimensionless lateral strain g22„s … for various val-
ues of v: „i…, v2Ä0.5; „ii …, v2Ä1.0; „iii …, v2Ä1.5; „iv …, v2Ä2.0,
and „v…, v2Ä2.64. For these results, nÄ0.3 and a rectangular
cross section was considered: h ÕLÄ0.1 and w ÕLÄ0.05.
Journal of Applied Mechanics
ins
d.
nce

nt,

f

ote
d,

lar
lts
ed

the

ue

on-
f our
e

tute

i-

t

el

in
ate
rn

lin-
ere
first
ike
b-

tained from the one discussed in Section 4, by settingg11,g22,
and their derivatives equal to zero, and ignoring Eqs. (10)2,3.7

The uniaxial models discussed in this section can also be con
ered as special cases of whirling elastic strings. For details on
extensive body of work in this area the reader is referred to A
man @1#.

Using either of the aforementioned approaches, the nontri
equation governing the axial displacementLu is

d2u

ds2 52
2v2~u1s!

3S du

ds
11D 2

21

, (18)

which is solved subject to the boundary conditions, from~13! and
~14!,

u~s50!50,
du

ds
~s51!50. (19)

In ~18!,

v5VAL2r0

Ẽ
. (20)

The modulusẼ in uniaxial studies is often taken to be Young
modulusE ~cf. Berdichevskii@23# and Cesnik and Hodges@24#!.
This specification ensures that the short wavelength limit of w
propogation coincides with the classical three-dimensional re
of Chree @25#. Other authors identifyẼ5E(12n)/((11n)(1
22n)) ~cf. Cremer et al.@26#!. It is important to note that the
model represented by~18! is a geometrically exact linearly elasti
model.

The ordinary differential Eq.~18! is integrable by quadrature
To see this, we use the obvious coordinate transformationx/L
5u1s which renders~18! autonomous. Furthermore, an integr
of motion I of the resulting equation is

I 5
3

4 S 1

L

dx

dsD
4

2
1

2 S 1

L

dx

dsD
2

1v2x2. (21)

Because the level sets ofI for strictly positivex anddx/ds do not
intersect, the solution to the boundary value problem for a spec
v is unique. UsingI ,u(s) can be obtained from a quadrature. W
remark that the resulting expression foru(s) would be useful in
obtaining the equations governing the vibrations of the rod.

In Fig. 5, representative solutions for various values ofv of
~18! which satisfy~19! are shown. Based on our numerical inve
tigations, we conjecture that solutions to this model exist for
values ofv. In interpreting the results of Fig. 5, it is interesting
note that for a rod-like body composed of steel, whereE

ds.

7More precisely, we are now considering a constrained rod theory where
directors are constrained to be constant vectors. In such a theory, the balance
(1)2 are identically satisfied by constraint responses. For details on the proce
used to obtain these responses the reader is referred to O’Reilly and Turcotte@22#.

Fig. 5 The dimensionless axial displacement u „s … predicted
by the uniaxial model „18… for various values of v: „i…, v2

Ä0.5; „ii …, v2Ä1.0; „iii …, v2Ä2.5; „iv …, v2Ä5.0; „v… v2Ä10.0; and
„vi …, v2Ä15.0.
SEPTEMBER 2001, Vol. 68 Õ 769
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5200 GPa andr057850 kg/m3, V'48200(v/L) RPM ~whereL
is in meters!. Consequently, some of the solutions presented p
tain to large rotational speeds.

To linearize the uniaxial model, the following approximation
used: 1@du/ds. As a result,~18! simplifies to

d2u

ds2 52v2~u1s!. (22)

This is the model investigated by Bhuta and Jones@5# and
Brunelle@6#. These authors showed that the solution of this eq
tion, subject to~19!, is

u~s!5
sin~vs!

v cos~v!
2s. (23)

In contrast to~18!, they also noted that whenv→p/2, u(1)
→`. However, it is also known~see@7#! that the approximation
used to establish~23! becomes invalid long beforev5p/2.

For completeness, we note that Hodges and Bless@7#, in an
attempt to correct the deficiencies in the linearized uniaxial mo
proposed generalizations of~22!. Their two generalizations are
equivalent to assuming the following strain-energy functions:

lcs5
Ẽwh

2 S ~Ag332121!21
2b

3
~Ag332121!3D ,

lcs5
Ẽwh

2
~ log2~Ag3321!!. (24)

For certain parameter regimes, the models developed and
lyzed in @7# exhibit qualitatively similar results to those present
in Fig. 5.

7 Concluding Remarks
Comparingu(s) shown in Fig. 5 with the corresponding resul

in Fig. 3, the qualitative similarity of the axial displacement pr
dicted by~10! and the uniaxial model~18! is apparent. It is clearly
of interest to examine this issue in more detail. First, we obse
that when Poisson’s ration50, then the equations governing th
boundary value problem associated with~10! decouple. In particu-
lar, the axial displacement predicted by~10! and~18! are identical.
In addition, for the boundary value problem of interest, E
(10)2,3 can be solved:

g11~s!50,

g22~s!5
v2

6 S w2

L2 D S 12

coshSA24L

w
~12s! D

coshSA24L

w D D . (25)

For nonzero values ofn, it was not possible to perform an ana
lytical comparison and, as shown in Fig. 6, we resorted to num
cal methods. In this figure,Du is the difference between the dis

Fig. 6 The dimensionless displacement Du „s … for various val-
ues of v: „i…, v2Ä0.5; „ii …, v2Ä1.0; „iii …, v2Ä1.5; „iv …, v2Ä2.0,
and „v…, v2Ä2.64. For these results, nÄ0.3 and a square cross
section was considered: h ÕLÄw ÕLÄ0.1.
770 Õ Vol. 68, SEPTEMBER 2001
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placement predicted by~10! and ~18!. Clearly, the model of
Section 3 predicts a larger overall extension of the rod-like bo
compared to the uniaxial model. This difference increases fr
zero as Poisson’s ration increases from zero to 0.5. In conclusio
the appropriateness of using uniaxial models to predictu(s) di-
minishes asn increases because the lateral deformations incre
ingly influence this displacement.

The model presented in Section 3 can also be modified to c
sider the effects of an added tip mass and rotor hub radius
addition, it can be applied to the oft-studied problem of a r
clamped to a rotating ring~cf. Antman @1#, Lakin and Nachman
@27#, and references therein!. This problem is of particular interes
because of the presence of buckling instabilities. To determine
vibrational equations for the steady motions of these problems
procedure discussed in O’Reilly and Turcotte@8# could be fol-
lowed. However, as we were unable to analytically integrate~10!,
and the analytically tractable~18! does not generally provide a
good approximation tou(s), any work on the vibrational respons
of the whirling rod will have to be performed using numeric
methods.

Acknowledgments
We are indebted to Prof. Andrew J. Szeri for pointing out t

feasibility of using numerical continuation methods to sol
boundary value problems. The helpful comments of two ano
mous reviewers are also gratefully acknowledged.

Appendix

The Uniaxial Model and a String Theory. As mentioned in
Section 6, the uniaxial model can be established using a st
theory. This theory is used to provide a one-dimensional mode
a rod-like body, where the motion of the centerline is of so
importance. Models for the deformation of elastic bars and cab
which are used in the literature are based on this theory.8

In a string theory, the body is modeled as a material cu
which is embedded in Euclidean three-space. The material po
of this curve are identified using the convected coordinatej. This
coordinate is chosen to be the arc-length parameter of the curv
a fixed reference configuration. The position vector of a point
the material curve at timet is given by the vector-valued function
r (j,t) wherer is measured from a fixed origin. The deformatio
of the curve is measured using the strain

g335r 8•r 821. (A1)

This strain also provides the stretchA11g33 of the curve.
The local form of the balance of linear momentum for the stri

is ~cf. (1)1!

n81lf5l r̈ , (A2)

wheren is the contact force,f is the assigned force per unit mas
andl5l(j) is the mass per unit undeformed length. For an el
tic string, one has the following constitutive relation forn ~cf.
(3)1!:

n5l
]cs

]r 8
, (A3)

wherelcs is the strain energy. This energy is assumed to b
function of g33:

n52l
]cs

]g33
r 8. (A4)

The local form of the balance of angular momentum for the str
is identically satisfied by this constitutive relation.

8Our developments here are specializations of the theory discussed in O’R
and Varadi@28#. Their work was based on the rod theory of Green and Naghdi.
Transactions of the ASME
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In the development of the uniaxial model discussed in Sec
6, the following prescriptions and assumptions were used:

l5r0wh, f50, r5xPE3 , lcs5
Ẽwh

4
g33

2 . (A5)

The strain-energy function used here implies that the string
nonlinearly elastic. Substituting (A5) into (A4) and (A1), and
invoking the relationsLu5x2j, it is easy to see that the non
trivial differential equation which results is~18!.
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Size Effects in a Slowly Sheared
Granular Media
In this paper, we analyze the nature of stress distribution experienced by large partic
a dense granular media subjected to slow shearing, using the distinct element m
The particles were generated in a three-dimensional cuboidal periodic cell in whic
large solid spherical particle was submerged (‘‘submerged particle’’) at the center o
bed of monodispersed spherical particles. The granular systems with different size
(i.e., the ratio of the diameter of submerged particle to that of the surrounding mono
persed particles) were subjected to quasi-static shearing under constant mean
condition. The evolution of stress distribution in the submerged particle during shea
was carefully tracked down and presented here. The nature of stress distribution is
cated into two components, viz., (i) hydrostatic and (ii) deviatoric components. It has
shown that, for size ratio greater than c.a. 10, the nature of stress distribution in
submerged particle is hydrostatically dominant (increases the ‘fluidity’). For smaller
ratios, the nature of stress distribution in the submerged particle is dominantly deviat
@DOI: 10.1115/1.1387443#
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1 Introduction
In recent years, granular materials have received an increa

attention due to their technologically challenging behavior in
verse applications in fields such as civil, mechanical, and pro
engineering. This has been facilitated greatly by the rapid gro
of computer power, which has enabled an insight to be gaine
the complex and often mysterious behavior of granular mater
by numerical simulations. In this paper, we report on the result
our investigations on the size effects of particles in granular s
tem subjected to slow shear deformation. The phenomenon u
study is relevant to dispersion, milling, grinding, and other ind
trial processes. The vibration induced size segregation prob
also known as ‘‘brazil-nut effect’’ has been the subject of seve
investigations~@1#!. When a container having larger particles em
bedded in smaller granular particles is vibrated, for example
tically, the bigger particles tend to move toward the top of t
container. Conflicting reasons have been attached to this phe
ena ~@2#!. Nevertheless, two-dimensional studies have indica
that ~@3#! there exists a threshold size ratio~diameter ratio of large
particle to the surrounding mono-dispersed particle!, above which,
the movement of larger particle increases. For smaller size r
~less than about three!, no ascent of the large particle~intruder!
was observed; for size ratio 5.3, the intruder undergoes an in
mittent ascent; and for size ratio greater than c.a. 10, the intru
ascends continuously and hence the fluidity~movement! of the
large particles becomes higher. However, we have not quite
derstood about how does an increase in particle size mysterio
favors such an easy movement.

Recent studies on the size effects in compacted beds base
experiments and micromechanical modeling have shown inte
ing characteristics. Bonnenfant et al.@4# have studied the effect o
presence of hard inclusions~glass! in a polymethylmethacrylate
~PMMA! matrix on compaction in a triaxial cell. Their exper
mental and analytical studies have shown no influence of la
inclusions on the global stiffness for the size ratio of the inclus
equal to 2 as considered by them. Tsoungui et al.@5# have adopted

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 1
2000; final revision, January 8, 2001. Associate Editor: D. Kouris. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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two-dimensional molecular dynamics simulations~with elastic in-
teractions between grains! to study the crushing mechanism o
grains inside a granular material under oedometric compress
They have also carried out experiments on the two-dimensio
packing of moulding plaster disks under oedometric compress
and the video-captured images of their experiments is presente
Fig. 1. They observed the geometric evolution of interparticle c
tacts inside the packing during the crushing process. The exp
mental and numerical observations have shown a saturation
gime, where large grains, surrounded by smaller grains experie
less deviatoric stress and more hydrostatic stress. Despite a
crease of external pressure, the large grain fracture was impos
because of this hydrostatic pressure~Fig. 1~b!!. However, they
have not quantified at what size scale the hydrostatic effect of
grains would become dominant.

Gundepudi et al.@6# have investigated analytically the state
three-dimensional stresses in a single sphere for some sele
cases of loading conditions. They have observed that as the n
ber of contact points increases, the maximum tensile stress in
sphere, in general, decreases and the state of stress insid
sphere approaches hydrostatic compression. Based on this,
carried out some tests on glass and alumina spheres and corre
the observations with an analytical study. Recently McDowell a
Bolton @7# have studied the micromechanical behavior of cru
able granular soils and have presented interesting argument
the breakage process. At first, it may be anticipated that the la
particles are most likely to fracture. However, the smaller partic
are likely to have fewest contacts and there are two oppos
effects on the particle survival; size and coordination number
the effect of the coordination number dominates over that of
particle size in the evolution of stresses in the aggregate, then
smallest particles would always fracture, although they have
explicitly attributed this effect to the hydrostatic nature of t
larger particles.

From the literature presented above, we can identify that
size effects in granular media have a significant contribution to
evolution of stress distribution. As for as we are aware, a cl
description of the nature of three-dimensional evolution of str
distribution in a slowly sheared granular media containing one
more larger particles is not available in the literature. In this pap
we analyze the nature of stress distribution for large size parti
in granular media subjected to slow shearing using the disc
element method. The particles were generated in a periodic
having a system of particles in which a large solid spherical p
ticle is submerged~‘‘submerged particle’’! at the center of a bed o

,
the
nt of
ill
E
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Fig. 1 „a… Enlargement of region of granular material showing the hydrostatic effect on a large
grain surrounded with small grains, „b… despite the increase of external pressure, the large
grain fracture becomes difficult because of this hydrostatic pressure „†5‡…
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monodispersed spherical particles. The granular systems with
ferent size ratio~i.e., the ratio of the diameter of submerged p
ticle ‘‘ D’’ to that of the surrounding monodispersed particles ‘‘d’’ !
were subjected to quasi-static shearing under constant mean
condition. The hydrostatic and deviatoric stress states of the
merged particle have been evaluated during shearing. The cr
size ratio at which the nature of stress distribution in a submer
particle becomes hydrostatically dominant has been identified
presented below.

2 Simulations
The simulations were carried out using discrete element me

which was originally developed by Cundall and Strack@8#. The
interactions between contiguous particles are modeled as a
namic process and the time evolution of the particles is advan
using an explicit finite difference scheme. The interactions
tween the neighboring particles are modeled by algorithms ba
on theoretical contact mechanics provided by Thornton and
@9# and Thornton@10#. The time-step used in the simulation
based on the minimum particle size and the Rayleigh wave sp
~@11#!. For detailed information about the numerical methodolo
the readers could refer to Cundall and Strack@8#. The advantage
of applying the discrete element method to granular material
its ability to give more information about what happens inside
system. For example, investigations based on discrete ele
method simulations have provided insights into the evolution
normal contact force distribution in granular media under qua
static shearing~@12,13#!. This enhances our understanding of t
physics of the granular media. In the present situation, we wo
first identify the contact forces acting on the submerged part
during shearing. Having known the boundary forces, we wo
address the total stress tensor of the submerged particle and
bifurcated into the hydrostatic and deviatoric components
analyzed.

The simulations were carried out in a three-dimensional cub
dal periodic cell. A large spherical particle was generated at

Fig. 2 Schematic diagram showing the sectional view passing
through the center of the periodic cell with submerged particle
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center of the periodic cell and was surrounded by 5000 rando
generated mono-sized spherical particles~Fig. 2! with diameter
0.01 mm. All the particles were given the following propertie
Young’s modulus,E570 GPa~hard!, Poisson’s ration50.3, co-
efficient of interparticle frictionm50.3 or 0.01, and interface en
ergy G50.6 J/m2. After the particles were initially generated, th
system was isotropically compressed until a mean stresp
51 kPa was obtained using a servo-control algorithm of the
lowing form ~@13#!:

ė5 ė1g~pd2po!. (1)

In the above equation,ė is the strain rate,pd is the desired iso-
tropic stress andpo is the obtained isotropic stress at a particu
stage. An initial strain rate of 1025 s21 was specified which was
progressively modified according to~1! using a value for the gain
parameter~g! calculated from

g5~ ė/~pd2po!! initial (2)

The Eqs.~1! and ~2! ensure that the strain rate decreases as
stress difference decreases and that the strain rate tends to z
the calculated value of the isotropic stress approaches the de
value, thereby bringing the system to equilibrium. In order to
a stable system at the desired stress level, calculation cycles
continued until the solid fraction and coordination number h
attained constant values. This procedure was used to progress
raise the isotropic stress to create a sample with an isotropic s
level of 100 kPa. At the end of the isotropic compression,
microstructure of the samples was isotropic. At this stage,
solid fraction and mechanical coordination number~average num-
ber of load-bearing contacts! of the samples considered in th
study were 0.65060.017 and 5.8360.26, respectively. For shear
ing, a strain rate of 1025 s21 was employed in the simulations
The samples were subjected to the axisymmetric compression
(s1.s25s3) ~@12,13#!. During shearing, the mean stressp
5(s11s21s3)/3 was maintained constant at 100 kPa using
servo-control algorithm.

3 Results and Discussion

As mentioned earlier, the contact forces (F (c)) acting on the
submerged particle and hence the stress tensor of the subm
particle are first calculated. Then, the principal components of
stress tensor for the submerged particle is calculated, followed
the bifurcation of the stress tensor into two components viz.,~i!
hydrostatic (ps) and ~ii ! deviatoric (tDs) components. This pro-
cess is schematically presented in Fig. 3. The evolution of th
stress components in the submerged particle during shearin
presented here.
SEPTEMBER 2001, Vol. 68 Õ 773
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Fig. 3 Illustrative diagram showing the state of stress and its bifurcation in the
submerged particle
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Figures 4 and 5 show the variation of the hydrostatic and
viatoric stress components, respectively, for the submerged
ticle during shearing~deviator strain5e12e3!. In these graphs
the hydrostatic and deviatoric stress components have been
malized to that of the entire granular system~p and tD , respec-
tively!. From these figures it can be observed that, as the size
increases, the components of both the hydrostatic and devia
contribution to the submerged particle increases. In these figu
the numbers indicated within brackets in the legend correspon
the value of interparticle friction of granular system. It shall
noted that, the kind of computations carried out here require s
stantial amount of computing power and hence we limited
investigation to the case of submerged particle with size ratio
to see the effect of interparticle friction. It can be seen that, for
values of coefficient of friction considered here, the behavior
not changed substantially. Hence, we carried out our analysis
ther for the case of a granular system with size ratio 15 with
coefficient of friction as 0.01 only. The reason that we selecte
study the effect of interface friction with the system having s
ratio as 10 would be evident later.

Fig. 4 Variation of the hydrostatic stress component of sub-
merged particle normalized to that of the entire granular sys-
tem during shearing
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The most striking feature of the nature of stress distribution
the submerged particle during shearing is presented in Fig
Figure 6 shows the variation of the ratio of deviatoric stress co
ponent to the hydrostatic stress component of submerged pa
during shearing. It shall be noted that, as the size ratio of
submerged particle increases, the values oftDs /ps decreases,
thereby, showing a growing dominance of the hydrostatic com
nent of the submerged particle for an increase in size ratio.
plot the valuestDs /ps corresponding to the steady state~satura-
tion regime; deviator strain c.a. 0.25! and presented in Figure 7
From Figs. 6 and 7 it can be concluded that, in a dense gran
packing subjected to slow shearing, the nature of stress distr
tion in particles at steady state becomes increasingly hydros
as the particle size ratio is increased. It is fully dominated by
hydrostatic stress component for particles with a size ratio eq
to or greater than c.a. 10. Hence it is reasonable to expect tha
particles with size ratio equal to or greater than c.a. 10 in a de
system, the fluidity of the particles would increase. At the critic
size ratio, the submerged particle attained a value oftDs /ps equal
to c.a. 0.2 at saturation regime.

Fig. 5 Variation of the deviatoric stress component of sub-
merged particle normalized to that of the entire granular sys-
tem during shearing
Transactions of the ASME
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Although not directly investigated, it would be interesting
comment about a correlation of the influence of critical size ra
in an analogical problem of aggregated suspensions in shear
In rheological problems, theoretical analysis based on continu
theories for aggregated concentrated suspensions under slow
flow is applicable if the size of suspension particles is an or
higher than that of fluid particles. Although it is customary to tre
the size of suspension an order higher than that of fluid particle
the best of our knowledge, no precise reason is available in
literature to justify this. The present study could, in a way, prov
a justification of keeping the critical size ratio as 10, as at this s
ratio, the nature of stress distribution in the particle is dominan
hydrostatic.

4 Concluding Remarks
The evolution of stress distribution in a large particle su

merged in a dense granular system~hard! has been investigate

Fig. 6 Variation of the ratio of deviatoric stress component to
the hydrostatic stress component of submerged particle during
shearing

Fig. 7 Variation of the ratio of deviatoric stress component to
the hydrostatic stress component with size ratio of submerged
particle at steady state
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using discrete element method simulations. The particles w
sheared in a periodic cell, subjected to axisymmetric compres
test under constant mean stress condition. Results show that a
size of the submerged particle increases, the number of con
would grow and contact forces at each contact contributes to
stress tensor. This contribution has been bifurcated into hyd
static and deviatoric stress components. As the size ratio
creases, the hydrostatic stress component of submerged pa
increases. For size ratio greater than c.a. 10, the nature of s
distribution in the submerged particle at saturation regime is
sentially hydrostatic (tDs /ps5c.a. 0.2). The ongoing investiga
tions on the related features of this study such as the fabric na
of contacts, macroscopic stresses, and influence of packing i
ported elsewhere~@14#!. It is to be said that the present simula
tions were carried out with relatively small number of particl
due to the limitations in computer power available. However, f
ther support from the researchers is necessary to confirm the
ings reported in this paper with simulations having large num
of particles, thus allowing statistically more accurate calculatio
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A New Method for Nonlinear
Two-Point Boundary Value
Problems in Solid Mechanics
A local and conditional linearization of vector fields, referred to as locally transver
linearization (LTL), is developed for accurately solving nonlinear and/or nonintegra
boundary value problems governed by ordinary differential equations. The locally lin
ized vector field is such that solution manifolds of the linearized equation transver
intersect those of the nonlinear BVP at a set of chosen points along the axis of the
independent variable. Within the framework of the LTL method, a BVP is treated
constrained dynamical system, which in turn is posed as an initial value problem. (IV
the process, the LTL method replaces the discretized solution of a given system o
linear ODEs by that of a system of coupled nonlinear algebraic equations in term
certain unknown solution parameters at these chosen points. A higher order version
LTL method, with improved path sensitivity, is also considered wherein the dimensi
the linearized equation needs to be increased. Finally, the procedure is used to dete
post-buckling equilibrium paths of a geometrically nonlinear column with and with
imperfections. Moreover, deflections of a tip-loaded nonlinear cantilever beam are
obtained. Comparisons with exact solutions, whenever available, and other approx
solutions demonstrate the remarkable accuracy of the proposed LTL method.
@DOI: 10.1115/1.1387444#
f
-

e

t
h

o
h
n

i

o

f
e
a
u

thod

ue
di-
uire
the

it is

rob-

l

st-
cise
ent
or
ent
ry
us

s in
sys-

ing
ven
gent
ions
er,

are
qua-

so-
ture
ing
m

dent
er-
sive
en
1 Introduction
There exist many numerical and semi-analytical techniques

solving nonlinear boundary value problems. For instance, dif
ent versions of Newton’s method~@1–3#! happen to be very popu
lar among the researchers. Recently a new iterative method~@4#!
has been proposed based on Pade approximations for num
analysis of nonlinear problems. In a companion paper~@5#! new
computational methods have been proposed to improve the i
tive procedure based on the Newton-Raphson procedure. T
techniques, based on the first-order perturbation technique, a
to define an adaptive step strategy and to improve the trial s
tion for the first iteration at each step. The power series met
~@6#! and the double Fourier series~@7#! method have also bee
employed in the solution of large deflection problems of circu
and rectangular plates, respectively. The perturbation techn
~@8,9#! is a very popular tool among the researchers working in
broad area of buckling and post-buckling of structures. In an
teresting paper~@10#! asymptotic-numerical methods, based
perturbation techniques, are proposed to solve nonlinear boun
value problems. The large deflection problem of circular pla
has been solved by the dynamic relaxation method~@11,12#!. Bu-
diansky@13# and Thurston@14# have analyzed the nonlinear di
ferential equations of the thin shallow spherical shells by conv
ing the pair of differential equations into a pair of integr
equations which are then solved adopting numerical techniq
Kai-yuan Yeh et al.@15,16# have proposed an analytical solutio
to the von Karman’s equations of a circular plate under a conc
trated load. The finite element method coupled with iterative te
niques has been extensively used to solve geometrically and
terially nonlinear problems~@17–19#!. Pollandt @20# has solved

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publicatoin in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 2
2000; final revision, May 17, 2001. Editor: M. Ortiz. Discussion on the paper sho
be addressed to the Editor, Professor Lewis T. Wheeler, Department of Mecha
Engineering, University of Houston, Houston, TX 77204-4792, and will be accep
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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von Karman’s plate equations using a boundary element me
along with radial basis functions. Recently He@21# has proposed a
new perturbation method coupled with the homotopy techniq
for the solution of nonlinear problems. In contrast to the tra
tional perturbation methods, the proposed method does not req
a small parameter in the equation. However, even though
method is apparently capable of handling strong nonlinearity,
limited by the constraint that the basic trajectory-type~such as
periodic or exponentially increasing or decreasing! for the nonlin-
ear problem has to be similar to that of the associated linear p
lem, which corresponds to the perturbation parameterp50. In
another recent development, Gao@22# has developed a genera
duality principle to search for the extremas~along with their sta-
bility types! in nonconvex energy expressions, used for po
buckling analysis of thick beams. There is nevertheless no pre
and widely applicable method available to date to solve differ
kinds of nonlinear boundary value problems with continuous
piecewise continuous vector fields. It is believed that the pres
method, that attempts to ‘‘exactly’’ solve the nonlinear ordina
differential equations at a countable set of points, should help
better understand the behavior of typically nonlinear system
structural mechanics and the impact of nonlinearity on these
tem responses.

It is usually not possible to replace the nonlinear govern
differential equations in terms of some linearized equations e
over small step sizes. The basic reason behind this is that tan
spaces in nonlinear differential equations are themselves funct
of the dependent variables. A way out of this problem is, howev
found in the proposed locally transversal linearization~LTL !
method, wherein solution manifolds of linearized equations
made to intersect transversally those of the given nonlinear e
tions at a set of points along the independent axis where the
lution vectors need to be determined. The most important fea
of this method is that it attempts to precisely satisfy the govern
nonlinear ordinary differential equations of the physical proble
at these chosen set of points along the axis of the indepen
variable. The LTL-based solution may, however, fall off consid
ably from the actual path in between any two such succes
points of intersections. The LTL method finally reduces a giv

6,
uld
nical
ted
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set of nonlinear ordinary differential equations to a collection
coupled sets of nonlinear algebraic equations in terms of the
known solution vectors at each of the chosen points along
independent axis. In the present study, the principle of LTL
applied to nonlinear boundary value problems, governing st
deflections of beams, by treating them as conditionally dynam
systems. In other words, a boundary value problem is looked u
as a constrained initial value problem, wherein one of the bou
aries~say, the left boundary! of the domain is treated as the initia
point to start integrating the ordinary differential equations. T
wards this, a precise knowledge of all the state variables at the
boundary is needed. However, to begin with, only a few of th
conditions are known at the left boundary while the rest are sp
fied at the right boundary of the domain. In this study, the u
known initial conditions at the left boundary are treated as
known variables to be determined such that the resulting solu
satisfies prescribed boundary conditions at the right bound
Note that an usual dynamical problem, modeled as an initial va
problem, is nonanticipative in that all the initial conditions a
precisely known at the starting time, sayt5t i . Thus the solution
vector at timet5t i 11 may be calculated without a prior know
edge the of the solution att5t i 12 . On the other hand, a boundar
value problem, treated as a constrained initial value problem
obviously anticipative and thus, adopting the LTL procedu
equations at all the transversal intersections must be written d
before any solution can be obtained. This implies that the non
ear algebraic equations at different intersections points are
coupled in this case. In the process, the conditionally constru
LTL solution automatically satisfies the conditions at the rig
boundary of the domain.

A limited numerical work has been carried out to demonstr
the capabilities of the proposed LTL technique. First, deflecti
and slopes of a tip loaded cantilever beam are obtained. Next
post-buckling equilibrium paths of a geometrically nonlinear c
umn with and without imperfections are obtained with vario
boundary conditions. Comparisons are made with exact soluti
whenever available, and other approximate solutions and in
process, high numerical accuracy of the proposed metho
readily brought out. A higher order version of the LTL metho
with still improved accuracy is also constructed, wherein the
mension of the linearized equation is suitably increased fo
higher path sensitivity.

2 The Methodology
The basic LTL methodology, as adapted for solving nonlin

boundary value problems, is described in this section. For
present study, only the subclass of boundary value problems
erned by the following system of ordinary differential equations
considered:

dw

ds
5A~s!w1Q~w,s!1 f ~s!5V~w,s! (1)

where w5$1w, 2w, . . . , nw%TPRn, A(s) is an n3n state-
independent coefficient matrix associated with the linear ter
f (s):D,R→Rn is the external~nonparametric! force vector,
Q(w,s):D3Rn→Rn is that part of the vector field which is non
linear in s, andV(w,s) stands for the entire vector field. Let th
given beam length be divided intor segments by nodes~r 11
nodes! and the nodal coordinates~alongs! be strictly ordered such
that 05s0,s1,s2, . . . ,si, . . . ,sr5L and hi5si2si 21

where i PZ1. Note that the only independent variable in su
systems is denoted assPR and the solution domainD5@s0sr # is
a closed and compact subset ofR. The boundary conditions ar
nontrivially defined on both the boundary points ofD. In particu-
lar, for an n-dimensional boundary value problem,m (0,m
,n) boundary conditions,jw(s0), jw0 , j 5 j 1 , j 2 , . . . ,j m , are
known at the left ends0 and the remaining (n–m) of them, i.e.,
kw(sr),kwr , k5k1 , k2 , . . . ,kn2m , are known at the right end
Journal of Applied Mechanics
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sr . To solve the above nonlinear ordinary differential equati
within the framework of LTL, one needs to treat the bounda
value problem as a constrained initial value problem, wherein
left boundarys0 of D is treated as the initial point to start inte
grating the ordinary differential equations. Now, towards integr
ing these governing system of ordinary differential equations
precise knowledge of all then-independent state variables ats
5s0 is needed. However, onlym (0,m,n) of these conditions
are known ats5s0 and the remaining (n–m) are only provided at
the right boundarysr of D. Thus the remaining (n–m) unspeci-
fied initial conditions,lw0 , l 5 l 1 , l 2 , . . . ,l n2m , enter the LTL
system as unknown variables to be so determined as to satisf
far-end boundary conditionskwr , k5k1 , k2 , . . . ,kn2m . It is now
needed to replace the nonlinear boundary value problem as
scribed by Eq.~1! by a set ofr conditionally linearized system o
ordinary differential equations wherein the solution manifold
the i th linear system of ordinary differential equations transv
sally intersects the original equilibrium path ats5si . Moreover
the i th linear system satisfiesn initial conditions ats5si 21 ~not
all of which are known a priori! and should preferable~but not
necessarily! represent the original solutionw(s), the i th length
segmentDi5(si 21 ,si #, whereø iDi5D and ù iDi5f, i.e., the
null set. Letw̄( i )(s)5$1w̄( i )(s) 2w̄( i )(s) . . . nw̄( i )(s)%T denote the
vector solution flow of thei th linearized system of ordinary dif
ferential equations. It should be apparent that these linear
equations may at best be only conditionally linear, being con
tioned upon their exactly satisfying the given nonlinear differe
tial equation at a discrete number of points,S5$si u i
51,2,3, . . . %, but not necessarily elsewhere. Since there are
uncountably infinite distinct linear ordinary differential equatio
transversal to a given~nonlinear! ordinary differential equation
the procedures to derive the conditionally linear system of o
nary differential equations are consequently nonunique and
countably many~@23–25#!. Here a convenient and easily adap
able methodology of linearization using LTL, henceforth label
as the LTL-1 scheme, is first described.

For a complete clarity of defining the intersection point a
ease of implementation, it is desirable to derive thei th locally
linearized system such that it is alson-dimensional and is prefer
ably obtainable from the given nonlinear system with the simp
and least alterations. Towards this, thei th linearized ordinary dif-
ferential equations are constructed by recasting Eq.~1! overDi as

dw̄~ i !

ds
5A~si !w̄

~ i !1B~wi ,si !w̄
~ i !1 f ~s!5V̄~w̄,s!. (2)

Note that elements of the arbitrarily chosen matrixB(wi ,si) are
functions of the still unknown solution vectorwi,w(si) and thus
Eq. ~2! is clearly conditionally linear with constant coefficien
provided that the vectorwi is precisely known. Since Eq.~2! is
required to satisfy Eq.~1! at the left end of the domain segme
Di , the initial condition vector to Eq.~2! is w̄(si 21),w̄i 21
5wi 21 . At this stage it will be useful to construct the locall
linearized variational equation associated with Eq.~1! based at the
point wiPM , whereM is the compact solution manifold with a
local Rn structure, as follows:

dy

ds
5Dw5wi

V~w,s!y5A~s!y1Dw5wi
Q~w,s!y (3)

where ‘‘D’’ stands for the vector derivative or Jacobian operator
is observed thatDwi

V(w,s) is the tangent map based at the po
wiPM with the usual Riemann structure of inner product nor
~see@26#!. On the other hand, since Eq.~2! is conditionally linear,
the corresponding variational equation atwi is obtainable by using
the same vector field without the external forcing term. Thus
variational equation is

dȳ

ds
5Dwi

V̄~w̄,s!5A~si !ȳ1B~wi ,si !ȳ. (4)
SEPTEMBER 2001, Vol. 68 Õ 777
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Here Dwi
V̄ is the tangent space of the linearized system atwi

PM . In fact, the unknown solutionwi , being a point of intersec-
tion of the flowsw(s) and w̄( i )(s), belongs toMùM̄ ( i ), where
M̄ ( i ) is the solution manifold generated byw̄( i )(s). This is a con-
dition that can be viewed as a constraint on the nonlinear
sponse. Consequently, a suitable constraint equation needs
arrived at. Towards this, the solution of the linear system of
~2! is explicitly written down as

w̄~ i !~s!5c~wi ,s,si 21!S wi 211E
si 21

s<si

c21~wi ,t,si 21! f ~s!dtD
(5)

wherec(wi ,s,si 21), is the~locally constructed! fundamental so-
lution matrix. While the first term on the right-hand side of Eq.~5!
represents the complementary solution, the second one, invo
integration, stands for the particular integral due to the exte
forcing function, f (s). Equation~5! may now be differentiated
once to yield

dw̄~ i !~s!

ds
5

dc

ds
wi 211

dc

ds Esi 21

s

c21~h! f ~h!dh1I f ~s! (6)

whereI is the identity map in dimensionn. The constraint condi-
tion, i.e.,wiPMùM̄ ( i ), may be considered equivalent to the ide
tity

w̄i5wi . (7)

In order to satisfy the above identity,w̄(s) and dw̄(s)/ds from
Eqs.~5! and~6! are substituted in Eq.~1! for w̄(s) anddw̄(s)/ds,
respectively, ats5si . This leads to the followingn algebraic
nonlinear equations for the unknown vectorwi .

m i~wi ,si ,si 21!50 (8a)

where the vector nonlinear functionm i is given by

m i5
dc~wi ,si ,si 21!

ds
wi 211

dc~wi ,si ,si 21!

ds

1E
si 21

si

c21~wi ,h,si 21! f ~h!dh2A~si !w̄~si !2Q~wi ,si !.

(8b)

Similarly one can construct a system of (r 21)n algebraic equa-
tions at intermediate nodal stationsi 51,2, . . . ..,r 21. All these
algebraic equations, however, contain the unknown boundary
dition vector lw0 , l 5 l 1 ,l 2 , . . . ,l n2m at s5s0 . Hencen2m ad-
ditional equations are necessary to solve these set of nonli
equations. These additional equations are readily obtainable
constructing ther th LTL system ats5sr followed by using the
specified boundary conditions at the right end of the bound
i.e., kwr , k5k1 ,k2 , . . . ,kn2m . Moreover, thisr th LTL system
may also be used to constructm nonlinear algebraic equations t
account form unknown elements,pwr

(r ) , p5p1 ,p2 , . . . ,pm , at
s5sr . Solving all these (r 21)n1n2m1m5nr coupled and
nonlinear algebraic equations together, one can, in general, o
all the unknown elements of the state vector at all the stati
simultaneously. Depending on the specific form of the vector fi
associated with the given boundary value problem, the numbe
such coupled algebraic equations to be solved within the L
framework may, however, be suitably reduced. A few such ca
have been discussed in Section 4. Attention is now focused on
analytical expressions for the two tangent maps,Twi

V and Twi
V̄

given, respectively, by Eqs.~3! and ~4!. It is clear thatTwi
V is

transversal toTwi
V̄ for almost allwi except at a countable numbe

of points satisfying the followingn nonlinear coupled algebrai
equations:

DwQ~wi ,si !5B~wi ,si ! (9a)
778 Õ Vol. 68, SEPTEMBER 2001
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where only real roots,wi , of the above equation are of interes
Consider, as a simple example, a one-dimensional (n51) case
with Q(w,s)5w3 and B(wi ,si)5wi

2. In this case, Eq.~9a! re-
duces to

2wi
250. (9b)

In other words,wi50 is the only point on the real line,R, where
the original and reconstructed tangent spaces,Twi

V andTwi
V̄, fail

to be transversal. Thus if the solutions,wi , of Eqs. ~8! and ~9!
happen to coincide, then the conditionally linear flowf̄s does not
transversally intersect the nonlinear flowfs at si , thereby render-
ing the LTL method ineffective.An obvious way out is to chang
si such that wi changes away from its singular value.

In the procedure just presented the values ofw̄(s) and
dw̄(s)/ds from Eqs.~5! and~6! are substituted in Eq.~1! for w(s)
anddw̄(s)/ds to explicitly satisfy the identityw̄(si)5w(si) at si .
However, one can avoid this-step provided that the condition
constant coefficient matrixB(wi ,si) the vector field of LTL Eq.
~2! is chosen such that

@B~wi ,si !#$wi%5$Q~wi ,si !%. (10)

In case such a decomposition, as in Eq.~10!, is possible, the LTL
Eq. ~2! becomes identical in form with that of Eq.~1! at s5si . In
this case, one straightaway obtains the transcendental and no
ear algebraic equations in the unknown vectorwi via the linear-
ized solution~5! as

wi5w̄i5c~wi ,si ,si 21!S wi 211E
si 21

si

c21~wi ,h,si 21! f ~h!dh D .

(11)

Similarly one can construct the nonlinear algebraic equation
all the (r 21) nodal stations~i.e., leaving out the two boundary
nodes!. As in the previous case, all these nonlinear algebraic eq
tions are coupled with the unknown boundary vectorlw0 , l
5 l 1 ,l 2 , . . . ,l n2m at the left boundary. The additional (n2m)
equations, to account for the unknown vector at the left bound
are made available, as before, by constructing ther th LTL system
~in terms ofw̄(r )! and using the known boundary condition vect
kwr , k5k1 ,k2 , . . . ,kn2m at the right boundary. As before, thi
r th LTL system may also be used to further constructm more
algebraic equations to take into account the unknown ve
pwr

(r ) , p5p1 ,p2 , . . . ,pm , at the right boundary.

3 Higher Level Locally Transversal Linearization
„LTL … Systems

It is of interest to derive other forms of LTL schemes wi
capabilities to remain close to the original path as followed by
nonlinear system with the given boundary conditions, provid
that the chosen step-size is sufficiently small. The basic form
LTL, presented in the previous section, only ensures transve
intersections at the two end-points of a chosen interval and n
consistent closeness of the paths in between. It is thus obvious
there is a scope to improve the basic LTL procedure, hencef
called the zeroth-level LTL procedure, to improve upon its pa
sensitivity. This may be done by suitably differentiating th
zeroth-level LTL-based ordinary differential equations there
constructing higher level LTL systems. Thus consider the cas
a nonlinear boundary value problem where the associated ze
level i th LTL system is given by Eq.~2!. The i th higher level LTL
equation~2n-dimensional! may be constructed by differentiatin
the original boundary value problem, given by Eq.~1!, once with
respect tos and suitably freezing parts of the resulting vector fie
at s5si . This finally leads to
Transactions of the ASME
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d2w̄~ i !

ds2 5A~si !
dw̄~ i !

ds
1F H dA~s!

ds
1

]B~wi ,s!

]s J U
s5si

1LS dwi

ds D G w̄~ i !1
d f~s!

ds
(12)

where then3n matrix L(dwi /ds) has the following typical ele-
ments:

Lkl5(
q51

n
]Bkl

]~qw! S dqw

ds D (13)

subject to the followingn boundary conditions and anothern in-
termediate constraints:

qw̄~ i !~si 21!,qw̄i 21
~ l 21!5qwi 21 , q51,2, . . . ,n

d qw̄i 21
~ i !

ds
5

dqwi 21

ds
5A~si 21! qwi 211Q~qwi 21 ,si 21!

1 f ~si 21!, q51,2, . . . ,n. (14)

While the firstn initial ~boundary! conditions~14! are the same as
those used for the zeroth-level LTL system, the second constit
a set ofn constraint conditions ats5si 21 . It may also be noted
that these constraint conditions involving derivatives ats5si 21
are implicitly defined in terms of the unknown vectorwi 21 ,
which is the desired state vector ats5si 21 . Satisfaction of these
constraint conditions therefore implies that in the first-level L
procedure, thei th LTL solution path not only emerges froms
5si 21 with the same values of the state vectorwi 21 as followed
by the original solution path, but also with the same derivativ
dwi 21 /ds. The same equality is also ensured ats5si , wherein a
transversal intersection now occurs between the 2n-dimensional
linearized and nonlinear solution manifolds~obtained by once dif-
ferentiating the givenn-dimensional system of ordinary differen
tial equations!. This obviously enhances path sensitivity of th
first-level LTL system, which was the objective of constructi
such systems. Proceeding in the same way, even higher leve
LTL systems may readily be conceived.

4 Illustrative Examples
In this section, a few beam elastica problems are studied u

the new LTL methods. In addition, nonlinear beam buckling pro
lems in the presence of initial imperfections are also studied
the first problem, deflections and slopes of a tip-loaded cantile
beam are calculated. When a concentrated load ‘‘Q’’ is applied at
the tip of the cantilever, it is possible to obtain exact solutions
the form elliptic integrals@27#. The cantilever beam along with th
coordinate axes is shown in Fig. 1~a!. The distance ‘‘s’’ is mea-
sured along the length of the beam and ‘‘x’’ denotes the projection
of ‘‘ s’’ along the undeformed longitudinal axis of the beam. T
exact equilibrium equation for the problem, written in terms of t
slope,u, of the deflection curve, is

EI
du

ds
5~L2x!Q (15)

wheredu/ds denotes the exact curvature of the beam. Differen
ating the equation with respect to ‘‘s’’ and noting that dx/ds
5cosu, one gets

d2u

ds2 1l2 cosu50 (16)

wherel25P/EI. Equation~16! is the governing nonlinear differ
ential equation for the problem and the associated boundary
ditions are

u~0!5u050,
du~L !

ds
5u r850. (17)
Journal of Applied Mechanics
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For solving the boundary value problem~16!, the following
zeroth-level LTL equation over thei th subdomainDi and with
initial conditions$ū i 21

( i 21) ,dū i 21
( i 21)/ds5 ū i 218( i 21)% is employed:

d2ū ~ i !

ds2 5b i (18)

whereu i5u(si). The complete solution of the conditionally linea
ordinary differential equation~18! is easily written as

ū ~ i !~s!5
b is

2

2
1C1s1C2 . (19)

The arbitrary constants of integrationC1 andC2 may be found via
initial conditions:

ū i 215u i 21 if i .1

50 if i 51 (20)

ū i 218 5u i 218 . (21)

Fig. 1 „a… Tip-loaded cantilever beam showing the coordi-
nate axes „b… Cantilever beam with initial imperfection „c…
Simply supported beam showing coordinates axes and initial
curvature
SEPTEMBER 2001, Vol. 68 Õ 779
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After obtaining the expression forū(s), it is simple to derive
analytical expressions forū9(s) in terms of the unknown solution
parametersb i . Substitutingū ( i )(s) andū ( i )9(s) in the original Eq.
~16! at s5si , a nonlinear algebraic equation inb i is obtained. In
a similar way one may continue obtaining nonlinear equations
the conditionally constant parametersb j ( j 51,2, . . . . . . ,r ) at all
the intersection points. This results in ‘‘r’’ nonlinear algebraic
equations inr 11 unknown parametersb j ( j 51,2, . . . . . . ,r )
andu08 . However, it may be observed that for the present prob
u r850 is known at the right end i.e.,s5L. Thus, in the condi-
tional initial value problem approach, the unknownsu08 is to be so
determined as to result in a constrained dynamical trajectory w
the curvature vanishing ats5L. This constraint condition leads t
the required additional equation via the analytical express
available forū (r )(s).

Solving the above nonlinear algebraic equation one obtains
value ofu at all the chosen points along thes-axis. The Cartesian
coordinates of the deflected curve at any pointi 11 is evaluated
from the relation

yt115yi1E
si

si 11

sinuds (22a)

xi 115xi1E
si

si 11

cosuds. (22b)

The above integrations are accomplished via the two-point Ga
ian quadrature rule.

The above problem may also be solved using a first-level L
method to obtain even better results. Here the linearized equa
over thei th interval takes the form

d3ū ~ i !

ds3 5g i . (23)

Instead of substitutingū ( i ), and ū ( i )9 in the original nonlinear
equation for obtaining the nonlinear algebraic equations, one
alternatively set up the required nonlinear algebraic equa
~without a need of substitution! by choosingb i5l2 cos(ui). In
such a case, it is clear that the vector fields of the original non
ear differential and linearized equations become identical as
5si . Hence one can set up the algebraic equation ats5si using

ū~s5si !5u~s5si !. (24)

Thus solutions of Eqs.~16! and~18! would instantaneously matc
at s5si if one could find a real rootu i of the following transcen-
dental equation:

u i2 ū~si ,b i~u i !!50 with b i5l2 cos~u i !. (25)

The above procedure may easily be extended to construct hi
order LTL systems. For instance, the solution parameterg i in the
first-level LTL Eq.~23! may be chosen asg i52l2 sin(ui)ui8 . The
boundary conditions are

ū i 215u i 21 if i .1

50 if i 50 (26a)

d2ū i 21

ds2 52l2 cos~u i 21! if i .1

52l2 if i 50. (26b)

Finally, the following pair of nonlinear algebraic equations
terms ofu i anddu i /ds may be arrived at

u i2 ūS si ,g i S u i ,
du i

ds D D50
780 Õ Vol. 68, SEPTEMBER 2001
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du i

ds
2

dū

ds S si ,g i S u i ,
du i

ds D D50. (27)

The second illustrative example is on the nonlinear buckling
a cantilever beam. The classical elastica problem of cantile
beam buckling is based on the exact expression for curva
and solutions of the resulting nonlinear differential equations m
be readily obtained in terms of elliptic integrals~@28#!. In this
case, the governing nonlinear differential equation may be writ
as

d2u

ds2 1
P

EI
sinu50. (28)

The associated boundary conditions are the same as in the
vious example. For the present problem, the zeroth-level L
equation over thei th subdomainDi and with associated initia
conditions$ū i 21

( i 21) ,dū i 21
( i 21)/ds5 ū i 218( i 21)% may be written in many

ways. Here two different ways of linearizations are tried. In t
first method, the following form for the linearized ordinary diffe
ential equation is tried out:

d2ū

ds2 52
P

EI
sin ū i5b i . (29)

One could also linearize Eq.~28! as

d2ū

ds2 1S P

EI

sinu i

u i
D ū50 (30a)

or

d2ū

ds2 1l2ū50 (30b)

where l25((P/EI)(sinui /ui)) and u i5u(s5si). In both these
cases, substitution of the linearized solution into the nonlin
ordinary differential equation is avoided. In the first method, s
lution of the conditionally linear Eq.~29! is the same as given in
Eq. ~19!. In the second method, the two eigenvalues needed
construct the solution of Eq.~30b! are given by

l1,256A P

EI

sinu i

u i
. (31)

Depending on the value of the argument within the square r
two possible cases arise. In the first case, letl2.0. This implies
that the eigenvalues are complex conjugate and are given by

l1,256 j b, b5A P

EI

sinu i

u i
, j 5A21. (32)

The solutions of the conditionally linear Eq.~30b! may be writ-
ten as

ū~s!5C1 sinls1C2 cosls (33)

where the constants of integration are evaluated from the bou
ary conditions. In the second case one hasl2,0. Thus the eigen-
values are real and are given by the Eq.~31!. The solutionū(s)
takes the form

ū~s!5C1 exp~bs!1C2 exp~2bs!. (34)

The rest of the steps for implementing the LTL method a
precisely the same as already outlined previously. As a third pr
lem, buckling of a cantilever beam with initial curvature is co
sidered. The equilibrium equation for the initially curved cantil
ver column may be written as
Transactions of the ASME
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ds22
d2u0

ds2 D1P sinu50 (35a)

or

d2u

ds2 1
P

EI
sinu5

d2u0

ds2 . (35b)

The notations are shown in Fig. 1~b!. The tangent angles of th
deformed and undeformed column areu andu0 , respectively. The
initial shape of the column is assumed to be of the form

u05A0S 1.2cosS ps

2L D D (36)

where A0 is the amplitude of tangent angle of the undeform
column. The linearized equation over the intervalDi may be writ-
ten as

d2ū

ds2 1S P

EI

sinu i

u i
D ū5u09 (37a)

or

d2ū

ds2 1l2ū5A0S ps

2L D 2

cosS ps

2L D (37b)

The functional form of the complete solution for the above or
nary differential equation may be written as

l2.0, l1,256 j b, b5A P

EI

sinu i

u i
j 5A21,

ū~s!5A sin~bs!1B cos~bs!1p~s! (38)

and when

l2,0, l1,256b, b5A P

EI

sinu i

u i

ū~s!5C1 exp~bs!1C2 exp~2bs!1p~s!. (39)

In the above expressionp(s) denotes the particular solution an
rest of the terms on the right-hand side constitutes the com
mentary solution of Eq.~37b!. The particular solution is given by

p~s!5S A0S p

2L D 2

S 2
p D 2

1l2
D cosS ps

2L D . (40)
2L ing
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The simply supported beam-buckling problem is solved as
next example to further demonstrate the application of the p
posed LTL method. The governing equilibrium equations and
associated boundary conditions are

d2u

ds2 1
P

EI
sinu50 (41a)

u8~0!50 and u8~L !50. (41b)

The above nonlinear differential equation is solved exactly in
same manner as explained in the case of cantilever buckling p
lem except that the boundary conditions are different in
present case. The last illustrative example considered here is
of the nonlinear buckling of an imperfect simply supported c
umn. The initial shape is expressed in the present case as

u05A0 cosS ps

L D . (42)

The rest of the procedure is identical to the one already expla
for the case of cantilever beam problem with initial curvature.

5 Numerical Results
The remarkable accuracy and potential of the proposed me

to solve nonlinear boundary value problems is demonstrate
this section via a few numerical results corresponding to the w
known nonlinear beam problems as outlined in the previous s
tion. In Table 1, deflections and slopes at the free end of a
loaded cantilever beam are given. It is clear from the table that
results compare well with the exact result~@27#!. It may be ob-
served here that the LTL-2~first level! method gives better result
than the LTL-1 ~zeroth-level! method. In Fig. 2, the deflected
shape of the cantilever beam is shown for various values of c
centrated load. The difference between the calculated value
obtained from LTL-1 and LTL-2 and the exact results can har
be represented graphically. They indeed compare very well
Fig. 3, the tip deflection of a cantilever beam under compress
in-plane load as obtained from LTL method is compared with
exact result~@28#!. The results obtained via LTL-1 and LTL-2
methods are shown in Table 2. In Table 3 the results obtained
using the LTL-1 scheme and different forms of the LTL-bas
ordinary differential equations~see Eqs.~29! and ~30!! are pre-
sented along with the exact results. Between the two LTL-1 me
ods it is seen that LTL-1~2! works better. This is obvious as i
takes into account the frequency information of the system w
linearization. It may be observed from the above tables and
ures that LTL procedure works accurately even for very high n
linearity. Since the error between the LTL-1 method and the ex
results are very small, all further calculations are carried out w
LTL-1 method alone. All the further results are obtained by sett
9436
8394
7456
6711
6124
5654
5271
4952
4682
4450
Table 1 Results for a tip-loaded cantilever beam

QL2

EI

Zeroth-Order LTL
80 segments

First-Order LTL
40 segments Exact

ytip /L
u

~radians!

~L-u!

L ytip /L
u

~radians!

~L-u!

L ytip /L
u

~radians!

~L-u!

L

1.0 0.3015 0.4611 0.9436 0.3017 0.4614 0.9436 0.3017 0.4613 0.
2.0 0.4928 0.7807 0.8398 0.4934 0.7818 0.8394 0.4935 0.7817 0.
3.0 0.6022 0.9843 0.7466 0.6031 0.9861 0.7456 0.6033 0.9860 0.
4.0 0.6687 1.1194 0.6725 0.6698 1.1211 0.6710 0.6696 1.1212 0.
5.0 0.7124 1.2132 0.6142 0.7136 1.2153 0.6123 0.7138 1.2154 0.
6.0 0.7431 1.2813 0.5676 0.7444 1.2840 0.5654 0.7446 1.2837 0.
7.0 0.7659 1.3324 0.5295 0.7672 1.3350 0.5270 0.7674 1.3350 0.
8.0 0.7835 1.3721 0.4978 0.7848 1.3749 0.4951 0.7850 1.3744 0.
9.0 0.7976 1.4032 0.4651 0.7989 1.4058 0.4681 0.7991 1.4055 0.

10.0 0.8091 1.4279 0.4479 0.8104 1.4302 0.4449 0.8106 1.4303 0.

ytip5deflection at the tip,u5slope at the tip
SEPTEMBER 2001, Vol. 68 Õ 781
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Fig. 2 Load displacement curves for a tip-loaded cantilever beam
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Fig. 3 Cantilever buckling: PÕPcr versus normalized tip
deflection
MBER 2001
up the nonlinear algebraic equations without resubstitutingū(s)
and ū9(s) in the original nonlinear equations. In Fig. 4, the sha
of the cantilever column under different loading intensities a
shown. All these shapes have been computed using the LTL t
nique. In the next figure~Fig. 5! the variation of axial strain is
plotted againstP/Pcr for the case of imperfect cantilever bucklin
for different amplitudes of imperfections. Next~Fig. 6!, the non-
linear buckling problem of a simply supported beam is solv
using the LTL method. In Fig. 7, theP/Pcr versus central deflec
tion plot is compared with that of the exact solution. From t
figure it may be observed that the LTL method works very w
for the nonlinear boundary value problems. The shape of the s
ply supported column under different intensities of load is sho
in Fig. 8. The LTL method is promising as it can predict any sha
without difficulty. The results are also shown in Table 4 alo
with the exact results. In Fig. 9 the axial strains are plotted aga
theP/Pcr for the case of imperfect simply supported beam. As
imperfection amplitude increases, the column deflects more
the same given load. TheP/Pcr versus central deflection is show
in Fig. 10.
108
194
239
222
125
932
626
195
627
915
Table 2 Comparison of zeroth and first-order LTL methods in the case of nonlinear buckling of
cantilever beam

P

Pcr

Zeroth-Order LTL
~LTL-1!

First-Order LTL
~LTL-2! Exact

u
~radian! xa ya

u
~radian! xa ya

u
~radian! xa ya

1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0
1.0038 0.1846 0.9915 0.1172 0.1741 0.9923 0.1105 0.1745 0.9924 0.1
1.0153 0.3918 0.9619 0.2456 0.3485 0.9698 0.2191 0.3491 0.9698 0.2
1.0351 0.5522 0.9249 0.3407 0.5233 0.9325 0.3237 0.5235 0.9325 0.3
1.0636 0.7179 0.8744 0.4332 0.6970 0.8816 0.4216 0.6981 0.8812 0.4
1.1021 0.8885 0.8104 0.5206 0.8728 0.8170 0.5126 0.8727 0.8170 0.5
1.1518 1.0586 0.7351 0.5988 1.0473 0.7410 0.5933 1.0472 0.7410 0.5
1.2147 1.2307 0.6495 0.6663 1.2218 0.6547 0.6626 1.2217 0.6546 0.6
1.2939 1.4028 0.5550 0.7219 1.3962 0.5594 0.7195 1.3963 0.5593 0.7
1.3932 1.5756 0.4534 0.7642 1.5710 0.4570 0.7627 1.5710 0.4569 0.7
1.5184 1.7489 0.3462 0.7923 1.7452 0.3490 0.7915 1.7453 0.3489 0.7

u5slope at the free end of the beam
xa5(L-u)/L, projected length of the beam~see Fig. 1~b!!
ya5Nondimensionalized deflection at the tip of the cantilever beam

Pcr5
p2EI

4L2
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Journal of Appl
Fig. 4 Deflected shape of the cantilever column under different levels of
axial load

Table 3 Nonlinear buckling of cantilever beam: comparison of results obtained from two dif-
ferent ways of linearizations

P

Pcr

LTL-1~1!
Eq. ~29!

LTL-1~2!
Eq. ~30! Exact

u
~radian! xa ya

u
~radian! xa ya

u
~radian! xa ya

1.0153 0.3918 0.9619 0.2456 0.3477 0.9700 0.2186 0.3491 0.9698 0.2
1.0351 0.5522 0.9249 0.3407 0.5220 0.9328 0.3230 0.5235 0.9325 0.3
1.0636 0.7179 0.8744 0.4332 0.6952 0.8822 0.4206 0.6981 0.8812 0.4
1.1021 0.8885 0.8104 0.5206 0.8705 0.8179 0.5115 0.8727 0.8170 0.5
1.1518 1.0586 0.7351 0.5988 1.0454 0.7423 0.5920 1.0472 0.7410 0.5
1.2147 1.2307 0.6495 0.6663 1.2180 0.6564 0.6614 1.2217 0.6546 0.6
1.2939 1.4028 0.5550 0.7219 1.3932 0.5616 0.7184 1.3963 0.5593 0.7
1.3932 1.5756 0.4534 0.7642 1.5674 0.4595 0.7618 1.5710 0.4569 0.7
1.5184 1.7489 0.3462 0.7923 1.7413 0.3520 0.7909 1.7453 0.3489 0.7
2.541 2.4314 20.0982 0.7535 2.4382 20.1026 0.7519 2.4435 20.1070 0.7500
4.029 2.7871 20.3362 0.6274 2.7874 20.3361 0.6274 2.7925 20.3400 0.6250
9.116 3.0685 20.5726 0.4249 3.0693 20.5732 0.4254 3.0718 20.5770 0.4210

u5slope at the free end of the beam
xa5(L-u)/L, projected length of the beam~see Fig. 1~b!!
ya5Nondimensionalized deflection at the tip of the cantilever beam

Pcr5
p2EI

4L2
Fig. 5 Imperfect cantilever buckling: PÕPcr versus axial strain
for different amplitudes of imperfection
ied Mechanics
Fig. 6 Imperfect cantilever buckling: PÕPcr versus tip deflec-
tion for different amplitudes of imperfection
SEPTEMBER 2001, Vol. 68 Õ 783
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Fig. 7 Nonlinear buckling of simply supported beam: PÕPcr
versus central deflection plot

Fig. 8 Deflected shape of the simply supported column under
different levels of axial loads as predicted by the LTL
ics.
the
r-
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Initially a convergence study was carried out to decide
the number of segments,r, required in the LTL-1 procedure to
accurately predict the deflection profile of the column and
post-buckling load. Details of these results are not shown for
sake of brevity. It has, however, been observed from the study
the converged results are obtained using 40 segments in
cases. However, when the beam shapes are severely distorte
der very high curvature nonlinearity, 40 divisions are not enou
to obtain converged results. In such cases, more number of
sions~about 120! are necessary to obtain the converged results
the present work, 120 divisions are taken in all the numeri
study.

As mentioned earlier, one has to solve all the nonlinear al
braic equations simultaneously in order to obtain the equilibri
path of the structure. In the present study, a globally converg
nonlinear equation solver based on line searches and backtrac
along the Newton directions~see@29#! has been adopted for solv
ing the system of the nonlinear algebraic equations.

6 Discussion and Conclusions
A novel and remarkably accurate local linearization method

ogy, called the locally transversal linearization~LTL !, is proposed
in the present study for solving a class of two-point nonline
boundary value problems of relevance in structural mechan
Given a system of nonlinear ordinary differential equations,
LTL method derives a set of conditionally linear ordinary diffe

Fig. 9 Imperfect simply supported column buckling: PÕPcr
versus axial strain for different amplitudes of imperfection
Table 4 Support slopes and center deflections of a simply supported beam under axial com-
pressive load

P

Pcr

Zeroth-Order LTL Results First-Order LTL Results Exact Results

a
~radian!

w

L

a
~radian!

w

L

a
~radian!

w

L

1.004 0.179 0.056 0.178 0.055 0.175 0.055
1.024 0.435 0.134 0.435 0.135 0.436 0.136
1.064 0.700 0.209 0.700 0.210 0.698 0.211
1.102 0.873 0.255 0.873 0.255 0.872 0.256
1.152 1.049 0.294 1.049 0.295 1.048 0.297
1.215 1.224 0.328 1.223 0.329 1.222 0.331
1.294 1.399 0.356 1.398 0.358 1.396 0.360
1.393 1.575 0.377 1.573 0.379 1.570 0.381
1.518 1.752 0.391 1.749 0.392 1.746 0.396
1.885 2.107 0.396 2.104 0.399 2.094 0.402

Note: Pcr5
p2EI

L2 ; w5center deflection; andL5 length of the column

a5slope at the support
Transactions of the ASME
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ential equations, each having its validity over a chosen step-
and satisfying the nonlinear system at the two boundary point
the interval. In the present LTL approach, a boundary value pr
lem is essentially treated as a constrained dynamical system
initial value problem wherein the left boundary is treated
the initial point to start integrating the ordinary differential equ
tions. To be precise, with the given step-size and prescri
boundary conditions at the left boundary~not all of which are
known a priori at this boundary to start integration!, the additional
boundary conditions needed to convert the problem into an in
value problem are treated as unknown variables. Such an in
value problem is constrained in that these unknown initial con
tions at the left boundary have to be so determined that the
structed solution satisfies the prescribed~boundary! conditions at
the right boundary. This constrained and nonlinear dynamical
tem is in turn replaced, following the LTL philosophy, by a set
conditionally linearized ordinary differential equations. It
necessary to construct as many systems of such linearized
nary differential equations as the number of segments into wh
the entire solution domain is discretized. Moreover thei th linear-
ized system of ordinary differential equations is derived in suc
way that the linearized solution manifold transversally interse
the ~locally defined! nonlinear solution manifold at thei th dis-
cretization point~node! in the solution domain. The conditiona
linearity of these derived dynamical systems stems from the
that the desired solution vectors enter these equations as unk
parameters. The postulated condition of transversal intersec
between the original and linearized trajectories leads to a sys
of nonlinear algebraic equations in terms of these unknown s
tion vectors.

It may be noted that posing a boundary value problem a
constrained dynamical system within the LTL framework resu
in a coupled system of nonlinear algebraic equations in term
the unknown solution parameters. Thus, unlike the case o
initial value problem~see, for instance,@23,24#!, there is an added
computational cost for treating boundary value problems w
such a scheme. The enhanced cost may, however, be offse
great extent by choosing a higher step size along the axis of
independent variable. Taking, for instance, a nonlinear beam p
buckling problem, there is enough numerical evidence to sug
that using as high a step-size as one-fourth of the length of
undeformed beam also leads to reasonably correct results w
nonlinearity is small. Another distinctive advantage of the p
posed method is its applicability to patently nonintegrable pr
lems with weak and strong nonlinearities alike. Moreover, unl
in the case of homotopy-based techniques, the user of the

Fig. 10 Imperfect simply supported beam buckling: PÕPcr ver-
sus central deflection for different amplitudes of imperfection
Journal of Applied Mechanics
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technique is not burdened with the task of having to assume s
form for the nonlinear equilibrium path. In fact, irrespective of t
complexities of the equilibrium paths, the principle of LTL is ab
to predict them with reasonable~and often with very high! accu-
racy. Efforts are presently on to apply the same principle
boundary value problems governed by nonlinear partial differ
tial equations.
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A Nonlinear Generalized Maxwell
Fluid Model for Viscoelastic
Materials
A nonlinear Maxwell fluid model consisting of a linear dashpot in series with a para
arrangement of a linear spring and a second-order nonlinear spring, was developed.
configuration provides the flexibility necessary to describe both the stiffening and
softening responses of some viscoelastic materials. A noteworthy feature of the mo
that under constant rate displacement, the force equation can be solved in closed
thereby providing a continuous, exact general solution.@DOI: 10.1115/1.1388615#
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Introduction
The existing techniques for modeling stiffening, nonlinear v

coelastic materials have a variety of limitations. Quasi-linear v
coelasticity~QLV! and other integral techniques require integ
tion of time-dependent material functions as modeling parame
resulting in an increase of computational complexity and ofte
lack of physical understanding of the model’s coefficients. N
merical solutions provide approximations to the exact soluti
and are susceptible to instabilities. Spring-and-dashpot phen
enological models describe the force-time relationship w
constant-value modeling coefficients. However, without the inc
sion of additional nonconstant elements, these models are i
pable of producing nonlinear elastic responses~@1,2#!.

In this study, a constant parameter spring-and-dashpot m
was developed to capture the strain stiffening response of the
load region of some viscoelastic materials. The resulting mode
capable of capturing both strain stiffening and material soften
Additionally, for constant rate elongations, a closed-form solut
was found for the resulting Riccati differential equation.

Nonlinear Model Development
A nonlinear Maxwell fluid spring-and-dashpot model was d

veloped to describe the complex nonlinear behavior of some

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 20, 2000; final revision, April 26, 2001. Associate Editor: D. A. Siginer. Disc
sion on the paper should be addressed to the Editor, Professor Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houston, TX 772
4792, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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coelastic materials. The standard Maxwell fluid model was cho
as the foundation to capture the softening behavior that is t
cally present outside the low-load region. A nonlinear seco
order spring (k2) was added in parallel to the linear (k1) spring
~Fig. 1!. This combination allows the second-order spring to ca
ture the nonlinear stiffening response of the initial low-load reg
while the Maxwell fluid portion can model the linearity and eve
tual softening of the material. While each of the two springs h
its own unique contribution to the overall stiffness, it is easies
view the parallel combination as a black-box equivalent spri
Thus, the equivalent spring stiffness is comprised of both lin
and quadratic responses. With this approach, the physical res
tions on each spring can be suspended, as long as the resu
equivalent spring does not violate physical limitations. For e
ample, a negative linear spring constant, while not physically r
sonable, in combination with a positive quadratic spring results
an equivalent stiffness between first and second order.

Model Derivations
The major drawback of adding a nonlinear element to

model is the loss of linearity in the differential equation that d
scribes the system. Finding a closed-form solution to such eq
tions can be quite daunting. The current model was derived w
out any simplifications, for a constant rate of displacement,a, to
the end result of a closed-form solution. By first imposing eq
librium it can be seen that

cẋ5k1d1k2d2 (1)

whered and x are the displacement of the springs and dash
from the rest position, respectively.

When subjected to a displacement controlled stretch at a c
stant rate,a, the length equations can be written as

-
s-
eler,

04-
elf
001 by ASME SEPTEMBER 2001, Vol. 68 Õ 787
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Fig. 1 The proposed nonlinear model, consisting of a parallel arrangement of a
linear spring „k 1… and a second-order spring „k 2…, in series with a linear dashpot
„c ….
a

o

of
Al-

titut-

n.
L5Lo1a~ t2to! (2a)

L5Lo1x1d (2b)

in which the subscripto denotes the start of elongation. Thus,
test starting at timeto50 produces the following relation,at5x
1d. Solving ford and substituting into~1! yields

cẋ5k1~at2x!1k2~at2x!2. (3)

Noting that the dashpot displacement at the onset of elongatio
zero-valued,x(0)50, and allowingm5k1 /c, and j5k2 /c, the
nonlinear Eq.~3! can be rewritten in the Riccati differential equ
tion form

ẋ5a~ t !x21b~ t !x1c~ t ! (4)

where

a~ t !5j

b~ t !52~m12jat !

c~ t !5at~m1jat !.

Determining a Solution
The aforementioned Riccati Eq.~4! is not readily solvable by

any nonnumerical techniques, and to the best knowledge of
authors, has not previously been solved in closed form. In orde
solve this nonlinear nonhomogeneous first-order differential eq
tion, a particular solution is first needed. By picking a soluti
form of xp5At1B, ẋp5A, ~4! becomes

A5j~At1B!22~m12jat !~At1B!1at~m1jat !. (5)

Matching orders oft yields

O~1!:A5jB22mB ~ i!

O~ t !:052jAB2mA22jaB1ma ~ ii !

O~ t2!:05jA222jaA1ja2. ~ iii !

Solving the above equations forA andB gives

~ iii !: A5a

~ ii !: 050 identically satisfied

~ i!: B5
m6Am214ja

2j
.

Thus,xp5at1B is a particular solution to~4!.
EMBER 2001
a

n is
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In order to determine the general solution, the reduction
order was implemented to gain the complementary solution.
lowing the complementary solution to be represented asu(t), the
general solution takes on the unique form~6!, as guaranteed

x~ t !5xp~ t !1u~ t !5at1B1u~ t ! (6a)

ẋ~ t !5a1u̇~ t ! (6b)

by the fundamental existence and uniqueness theorem. Subs
ing into ~4! yields

a1u̇5jB212jBu1ju22mB2mu. (7)

This, in turn simplifies to a Bernoulli equation by employing~i!
and ~iii !,

u̇5~2jB2m!u1ju2. (8)

This result is a nonlinear first order ordinary differential equatio
Since the coefficients are constant, it is separable. Lettingf
52jB2m, ~8! can be separated and rewritten as

du

u~f1ju!
5dt. (9)

Expanding with partial fractions gives

1

f F1

u
2

j

~f1ju!Gdu5dt, (10)

which when integrated and simplified gives

u5
fKeft

12Kjeft . (11)

Applying the initial condition, x(0)50, to ~6a!, u(0)5uo
52B, and solving forK yields

K5
B

Bj2f
. (12)

The complementary solution becomes

u~ t !5
fBeft

Bj~12eft!2f
. (13)

Thus, the unique general closed-form solution is

x~ t !5at1B1
fBeft

Bj~12eft!2f
(14)
Transactions of the ASME



Journ
Fig. 2 Parameter sensitivity illustrated via force-time plots of numerical solutions „hollow squares …, positive root
„thick gray line …, and negative root closed-form solutions „black line …. „a… Three decades of linear spring stiffness,
k 1Ä0.1, 1, 10 NÕcm „aÄ10 cm Õs, k 2Ä1 NÕcm2, cÄ1 N"sÕcm …. As k 1 increases the slope increases and the nonlinear-
ity of the low load region becomes less prominent. Variation of the linear stiffness „k 1… has no effect on the peak
load value, however, increasing k 1 shortens the time needed to reach it. „b… Three decades of second-order spring
stiffness, k 2Ä0.1, 1, 10 NÕcm2

„aÄ10 cm Õs, k 1Ä1 NÕcm, cÄ1 N"sÕcm …. As k 2 increases the slope increases and the
nonlinearity of the low load region becomes more prominent. Variation of k 2 has no effect on the maximum load
value, however, increasing k 2 shortens the time needed to reach the peak load. „c… Varying displacement rates, a
Ä5, 10, 20 cm Õs „k 1Ä1 NÕcm, k 2Ä1 NÕcm2, cÄ1 N"sÕcm …. Note that the stiffness increases with increasing a, and the
load approaches a value of c "a as time evolves. „d… Three decades of dashpot values, cÄ0.1, 1, 10 N"sÕcm „a
Ä10 cm Õs, k 1Ä1 NÕcm, k 2Ä1 NÕcm2

…. An increase in the viscous damping, c , increases the value of the peak load as
well as the time required to reach maximum force.
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where

B5
m6Am214ja

2j

m5
k1

c
, j5

k2

c
, f52jB2m

a5constant rate of displacement.

Therefore, the resulting velocity equation is

ẋ5a1
f2Beft~Bj2f!

B2j2e2ft22Bjeft~Bj2f!1~Bj2f!2 . (15)

When examined via limit analysis,~15! obtains

lim
t→`

~ ẋ!5a. (16)
al of Applied Mechanics
This result makes physical sense since at long time periods
velocity of the dashpot will approach the controlled displacem
rate.

Higher-Order Models
To expand the range of order in the equivalent spring, a

thereby increase the model’s flexibility, additional spring com
nations were explored. Higher-order models were created by a
ing either a third-order, or a third and a fourth-order spring, ea
in parallel, to the linear and second-order springs, resulting
equivalent springs capable of describing responses with cubic
quartic components, respectively.

An exploration of the associated differential equations sho
that if a general polynomial function is assumed, and closed-fo
solutions are sought, then only nonlinear representations up to
including degree four are allowed by the mathematical approac
taken herein. A deeper exploration shows that no closed-form
SEPTEMBER 2001, Vol. 68 Õ 789
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lutions for general polynomials above degree two are admissi
The second-degree model admits an exact solution because
complementary equation is separable, and the dependent vari
u, can be solved explicitly as a function of time. However, for t
third-degree model, the complementary solution is again se
rable, but no explicit solution foru(t) can be found. Further, an
expansion solution can be found, but the expansions must be t
cated after the second degree so that an explicit representatio
u(t) can be found. This is due to the fact that closed-form so
tions for the roots of polynomial equations can only be found,
general, up to the fourth degree. Using this expression ofu(t), an
approximate solution for general polynomials of degree three
be found. The fourth-degree model yields a separable equa
but is not generally integrable. The same holds true for all gen
higher degree models.

Model Behavior
The closed-form solution of the model has two solutions, c

responding to the positive and negative roots ofB ~14!. A numeri-
cal solution was obtained within MATLAB using a medium ord
method to solve nonstiff ordinary differential equations. Equati
~4! did not exhibit rapidly decaying solutions, and thus was n
considered stiff. The positive root, negative root, and numeri
solution force-time traces were plotted for a wide range ofk1 , k2 ,
andc values, demonstrating the model’s ability to reproduce i
tial nonlinear stiffening, followed by material softening~Fig. 2!.

The sensitivity of the force-time relationship to given param
eters was studied by varying one coefficient while holding t
other three constant. As linear spring values (k1) increased, the
nonlinearity of the low-load region became less prominent,
slope increased, and the model approached a standard Max
fluid response~Fig. 2~a!!. Similarly, an increase in the second
order spring (k2) increased the slope, but made the nonlinearit
more prominent~Fig. 2~b!!. Increasing either spring constant re
duced the time needed to attain peak load, but had no effect o
value. As the displacement rate~a! increased, both stiffness an
peak load increased~Fig. 2~c!!. The viscous damping~c! directly
affected the maximum value and time period of the load-tim
response~Fig. 2~d!!.

Fig. 3 Force-time plot for aÄ10, k 1Ä1 NÕcm, k 2Ä0.5 NÕcm2,
cÄ0.001 N"sÕcm. Note the very close agreement between the
numerical solution „thin black line … and the positive root „thick
gray line … closed-form solutions until tÌ0.1 sec, at which the
numerical solution becomes unstable.
790 Õ Vol. 68, SEPTEMBER 2001
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The numerical solution showed great agreement with b
closed-form solutions; however, there were some extreme cas
which the numerical solution became unstable~Fig. 3!. Stability
limits were found for each parameter by setting all parame
equal toc, and increasing a particular parameter until instabilit
began to arise~Table 1!.

Discussion
This particular type of model was chosen due to its relat

simplicity and computational clarity. As noted by Lockett@1#,
‘‘The main value of spring-dashpot models is in providing a re
tively simple qualitative picture of the manner in which viscoela
tic materials behave, and this is only feasible when the mod
contain only a few elements.’’ Thus, our three-element model
cilitates an improved understanding of material behavior, and h
it is affected by the individual model components.

The positive aspects of model simplicity do not come withou
cost. In order for a differential equation description of materials
function over a wide range of time or frequency, it is usua
required to have higher order equations with many terms~@3#!.
Attempts to increase the order of our model’s equivalent spri
and therefore increase model flexibility, resulted in unattaina
closed-form solutions. Thus, this model sacrifices a degree of fl
ibility for an increase in the understanding and clarity of the m
terial response, as do the classic models of Maxwell and Ke
~Voigt!.

Time and frequency flexibility is typically achieved through th
use of integral equations. While integral equations greatly
prove model flexibility, they do not clearly establish the materia
response in terms of an equivalent stiffness, its order, and
strength of viscous damping. These properties may be availa
however, they are not as clearly identified, and their contribut
is hard to separate from the overall response.

The closed-form solution of our model was determined
constant-rate displacement-control testing. The model is fully
pable of handling rates of displacement that are functions of ti
however, the process taken to obtain the closed-form solution
not provide a particular solution to the resulting differential equ
tion. Therefore, it appears that numerical solutions remain
only option for the treatment of nonconstant displacement rat

Conclusion
A new phenomenologic model, while a fluid model, captur

both the nonlinear stiffening and the softening response exhib
by a variety of viscoelastic materials. The relative simplicity
this model helps isolate the contributions of the viscous damp
linear, and second-order stiffness. Moreover, the closed-form
lution to the resulting Riccati differential equation provides a p
viously unavailable exact solution.

Acknowledgments
The authors would like to thank the financial support of T

Whitaker Foundation@TMB#, as well as University of Wisconsin
Surgical Associates.

References
@1# Lockett, F. J., 1972,Nonlinear Viscoelastic Solids, Academic Press, London.
@2# Forcinito, M., Epstein, M., and Herzog, W., 1998, ‘‘Can a Rheological Mus

Model Predict Force Depression/Enhancement?’’ J. Biomech.,31, pp. 1093–
1099.

@3# Lakes, R. S., 1999,Viscoelastic Solids, CRC Press, Boca Raton, FL.

Table 1 Numerical solution instability ratios

a/c k1 /c k2 /c

.300 1 1
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1 1 .300
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Structural Modification
for the Assignment of Zeros
Using Measured Receptances
In many engineering applications it is desirable to assign the zeros of point or c
receptances to particular frequencies. This means that at the chosen coordinate no
tion will be experienced at those frequencies. It is shown how such an objective c
achieved by means of passive stiffness, damping, and mass modifications to the str
The frequency responses of a subsidiary eigenvalue problem, the eigenvalue prob
the zeros, are determined in order that the methods of inverse structural modification
be applied. The technique requires only a small number of measurements from the
ture in its unmodified condition. Numerical and physical experiments are carried ou
illustrate the application of the method.@DOI: 10.1115/1.1388616#
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Introduction
There are two structural modification problems: forward a

inverse. Theforward structural modification problemis to deter-
mine the eigenvalues and eigenvectors of a system with a kn
modification to its stiffness and mass terms. This proced
sometimes known as re-analysis, is common in vibration opti
zation and in finite element model updating. Usually a close
proximation to the eigenvalues of the modified system is acc
able. Baldwin and Hutton@1# reviewed a number of method
including Rayleigh quotient, sensitivity, and perturbation tec
niques. Ram@2# determined the eigenvalues of damped su
systems with known connections using transfer function or sp
tral and modal data from the separate subsystems.

The inverse structural modification problemis to determine the
modification ~the added stiffness, damping, or mass! that will
bring about a desired change in the eigenvalues and eigenve
of a vibrating system. The inverse problem is generally more
manding than the forward problem and can be applied to m
sured vibration data to determine a modification without the n
for a finite element model. The modification may be passive
active. Weissenburger@3# and Pomazal and Snyder@4# used unit-
rank modifications to relocate a single natural frequency. T
other natural frequencies were affected by the modification but
controlled. Mottershead and Lallement@5# used the same metho
to bring about the cancellation of a pole with a zero thereby c
ating a vibration node. Bucher and Braun@6,7# developed an exac
method for the assignment of vibration mode shapes from spe
and modes, including measured left eigenvectors. The left eig
vectors were determined from noisy measurements using reg
ization by L-curves. Tsuei and Yee@8# described a method fo
shifting natural frequencies by using measured frequency
sponse data. Li et al.@9# used a similar method to create a glob
pole-zero cancellation~cancellation of a natural frequency with a
antiresonance! which left another, uncancelled, pole at the sa
frequency. Mottershead et al.@10# showed how the nodes of nor
mal modes~and natural frequencies! could be assigned using mea
sured receptances. The modifications were determined from
null space of a matrix containing the measured vibration data

Until now inverse structural modification has not been appl

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
4, 2000; final revision, May 17, 2001. Associate Editor: A. A. Ferri. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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to adjust the zeros~antiresonances! of measured receptances. B
this is a desirable objective, with many engineering applicatio
because the zeros define those frequencies at which vibra
disappear. The dynamic vibration absorber, a good descriptio
which can be found in Inman@11#, is really a device for the
assignment of point-receptance zeros. In the case of the clas
undamped vibration absorber the zeros lie on the imaginary
of the complex eigenvalue plane and when the absorber includ
damper the zeros generally become complex. Ram and Elhay@12#
determined the parameters of a multi-degree-of-freedom
damped absorber secondary system by solving an inverse e
value problem. In a recent survey paper Sun et al.@13# cited some
90 papers on passive and active tuned vibration absorbers.

The zeros of different point and cross receptances gene
occur at different frequencies, whereas the poles are unchan
They can be determined by solving a ‘‘subsidiary’’ eigenval
problem. The subsidiary problem is symmetric for poin
receptance zeros, and asymmetric for cross-receptance z
~Mottershead@14#!. In numerical studies, without damping, th
subsidiary matrices are formed from the stiffness and mass~K , M !
matrices of the system by deleting a single row and column. W
the row and column have the same index the resulting ma
system will be symmetric and its eigenvalues will be the zeros
a point receptance. They will interlace the eigenvalues of
poles. When the deleted row and column have different indi
the resulting matrices will not be symmetric, interlacing rules w
not apply, and the eigenvalues~cross-receptance zeros! may be-
come complex and/or defective~Mottershead@15#!.

In this paper it is shown how the eigenvectors and freque
responses of the subsidiary eigenvalue problem of the zeros
be obtained from receptance measurements from the whole
tem. The method can be applied to point and cross-recepta
zeros and thereby allows existing techniques to be applied to
sign zeros by structural modification. In the cross-receptance
it is necessary to take four measurements at the frequenc
which a zero will be assigned. For point receptances only th
measurements are needed. The inverse method elaborated
following sections differs completely from the well-known prob
lem of assigning the poles and zeros of a linear control sys
~Kailath @16#!. It has the advantage~over the dynamic vibration
absorber! that zeros can be assigned to both point and cross
ceptances, and whereas an absorber must be attached at the
coordinate as the assigned point-receptance zero, the modific
can be applied at a different coordinate. The method is illustra
with numerical and physical examples.
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Theory
We write the system stiffness, damping, and mass matriceK

5KT>(or.0), C5CT>0 andM5MT.0, in the form

Fkpq kp
T

kq K pq
GPRn3n, (1)

Fcpq cp
T

cq Cpq
GPRn3n, (2)

Fmpq mp
T

mq M pq
GPRn3n. (3)

K pq is the matrix formed fromK by deleting thepth row andqth
column,kpq is thepqth term ofK , kp

T is thepth row of K ~except
for kpq! andkq is theqth column ofK ~except forkpq!. Similar
definitions apply to the terms in the partitioned damping and m
matrices.

The matricesK pq ,Cpq ,M pq define the subsidiary system

~K pq1 s̄iCpq1 s̄i
2M pq!c i50, i 5 l , . . . ,n, (4)

where the eigenvaluess̄i determine the frequencies of the zeros
the frequency responseshpq5hqp . The physical meaning of the
eigenvectors,c i , and the subsidiary frequency responses,

Hpq~s!5~K pq1sCpq1s2M pq!
21, s5 iv, (5)

is obscure but can be used to assign the zeros by structural m
fication. Whenp5q the subsidiary system represents a point
ceptance and whenpÞq a cross receptance.

Eigenvectors of the Subsidiary System
We define the frequency responsesH(s), s5 iv, of the com-

plete system by the relationship

B~s!H~s!5In3n , (6)

where

B~s!5~K1sC1s2M !. (7)

When theqth column ofH( s̄i) is considered~at thei th zero of the
frequency responsehpq!, then

Bp~ s̄i !5
h1q

h2q

]

hp21,q

hp11,q

]

hnq

6 55
0
]

0
1
0
]

0

6 , ←qth entry (8)

whereBp( s̄i)PRn3(n21) is the same asB( s̄i) except that thepth
column is omitted. When theqth row as well as thepth column is
taken out we find that

Bqp~ s̄i !5
h1q

h2q

]

hp21,q

hp11,q

]

hnq

6 50, (9)

so thathq5(h1qh2q . . . hp21,qhp11,q . . . hnq)
T is an eigenvector

of Bqp( s̄i). A similar analysis~whenpÞq! shows thathp is a left
eigenvector ofBqp( s̄i). If p5q thenBpp(s) is symmetric so that
its eigenvalues have nonpositive real parts.
792 Õ Vol. 68, SEPTEMBER 2001
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Frequency Responses of the Subsidiary System
The frequency response equation for the complete system

be expressed as

H~s!f~s!5x~s!, s5 iv, (10)

and in the case of a zero ofhpq(s) the force applied at coordinat
q gives rise to zero displacement at coordinatep. We write Eq.
~10! in full ~and with rows and columns rearranged! as

F hpq hp1 hp2 ¯ hpn

h1q h11 h12

h2q h21 h22

] �

hnq hnn

G 5 f q*
f 1

f 2

]

f n

6 55
xp50

x1

x2

]

xn

6 . (11)

The first row of Eq.~11! leads to the expression

f q* 52
1

hpq
~hp1hp2 . . . hp,q21 ,hp,q11 . . . hpn!5

f 1

f 2

]

f q21

f q11

]

f n

6 ,

(12)

or f~s!5A~s! f̃~s!, (13)

where

f~s!5~ f q* f 1f 2 . . . f q21f q11 . . . f n!T, (14)

f̃~s!5~ f 1f 2 . . . f q21f q11 . . . f n!T, (15)

A5F 2
1

hpq
~hp1hp2 . . . hp,q21hp,q11 . . . hpn!

I ~n21!3~n21!

G . (16)

f q* (s) is the force at coordinateq that maintainsxp50 across the
frequency range of the measured data from the complete sys
Equations~12! and ~13! have a unique solution except at the fr
quency of a zerohpq( s̄i)50. In that casef̃ ( s̄i)50 simultaneously
and there exists an infinity of solutions to Eqs.~12! and ~13!. In
practice this hardly ever arises and would only do so when
coincidence a discrete frequency of the digital frequency respo
data was at exactly the same frequency as a zero ofhpq .

A similar analysis to the above, but based on the forcef p* to
producexq50, yields

Ā5F 2
1

hqp
~hq1hq2 . . . hq,p21hq,p11 . . . hqn!

I ~n21!3~n21!

G . (17)

Now we combine Eqs.~10! and~13! and premultiply byĀT(s) to
obtain,

Hpq~s! f̃~s!5 x̃~s!, (18)

where

Hpq~s!5ĀT~s!H~s!A~s!PC~n21!3~n21!, (19)

and

x̃~s!5ĀT~s!x~s!PC~n21!, (20)

or

x̃~s!5~x1x2 . . . xp21xp11 . . . xn!T, (21)

because of the constraintxp50.
Transactions of the ASME
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The frequency responseh̃tt is now defined to be the term from
Hpq(s), s5 iv, at the coordinatet of the original system~and t
Þp, q!. h̃tt will not necessarily lie on the diagonal ofHpq(s), but
can in any case be shown, from Eq.~19!, to be given by

h̃tt5htt2~hpthqt!/hpq . (22)

This subsidiary-system frequency response is used in the fol
ing section to asign a zero inhpq by a modification at coordinate
t. It should be noted that it is only necessary to measure f
frequency responseshtt , hpt , hqt , andhpq in order to obtainh̃tt .
In the case whenp5q Eq. ~22! can be simplified to give

h̃tt5htt2hpt
2 /hpp , (23)

so that it is only necessary to measure three frequency respo

Assignment of Zeros
In this section we review the method presented by Pomazal

Snyder@4# and applied subsequently by Zhang and Lallement@17#
and Mottershead and Lallement@5#. The eigenvalue equation o
the system with a modificationbf at the f th coordinate can be
written as

~K1srC1sr
2M1bfefef

T!w r50, r 51, . . . ,n, (24)

where

hf5sr
2mf1srcf1kf , (25)

sr andw r are ther th eigenvalue and eigenvector of the modifi
system andef is the f th column ofIn3n . When Eq.~24! is pre-
multiplied by H(sr)5(K1srC1sr

2M )21 it is found that

~ I1bfH~sr !efef
T!w r50, (26)

the f th term of which is given by

~11ef
TbfH~sr !ef !ef

Tw r50. (27)

Sinceef
Tw rÞ0 it can be seen that

2
1

bf
5hf f~sr !. (28)

For frequency responses, whens5 iv, the modifications can be
expressed as

kf2v r
2mf52

cos/hf f~v r !

uhf f~v r !u
, (29)

and

v rcf5
sin/hf f~v r !

uhf f~v r !u
. (30)

Clearly a passive modification~kf or mf! can always be made
depending upon the sign of the right-hand side of Eq.~29!. For a
stable system having unmodified eigenvalues with nonposi
real parts the assignment of a pole to the imaginary axis wo
require a negative damping modification. Singh and Ram@18#
considered the assignment of point-receptance zeros by pa
modifications. They established mutually exclusive conditions
the assignment of a positive mass or stiffness-modification fo
constrained mass-spring system. Their paper contains the s
conclusion on the need to add negative damping for vibra
absorption in a damped system, but by a different argument.

In the case of assigning a zero tohpq by a modification at
coordinatet it is only necessary to replacehf f(Sr) with h̃tt(S̄i) in
Eq. ~28!, whereS̄i now denotes the zero to be assigned~not a zero
of the unmodified system!. By combining Eqs.~22! and ~28!,
whenpÞq, we obtain

2
1

bt
5htt2~hpthqt!/hpq , (31)

and whenp5q,
Journal of Applied Mechanics
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bt
5htt2hpt

2 /hpp . (32)

The choice of modification coordinate has been considered
previous authors~Pomazal and Snyder@4#, Zhang and Lallement
@17#, and Mottershead and Lallement@5#!. In particular if thei th
eigenvector~or left eigenvector! hp( s̄i) ~or hq( s̄i)! contain a zero
entry at coordinatet then the zeros̄i will be unchanged by the
modification. In order to reduce the magnitude of the modificat
bt to acceptable levels it is usual to choose at corresponding to
relatively a large entry inhp( s̄i) ~andhq( s̄i)!.

Numerical Example
The six-degree-of-freedom system shown in Fig. 1 is cons

ered where the value of all the stiffnesses and masses is unit

Case 1—Undamped System. The ‘‘measured’’ cross recep
tanceh45 of the unmodified system is shown in Fig. 2 and it
required to assign a zero at 1.5 rad/s by a modification at coo
nate 3. The eigenvalues~poles and zeros! of the system are given
in Table 1. A modification in the form of a grounded springk*
50.4605 relocates the zeros to frequencies shown in Table 2
the receptance of the modified system, together with
subsidiary-system receptance at the modification coordinate,
lustrated in Fig. 3. It is clear that the poles of the subsidia
system correspond to the zeros ofh45. A pole-zero cancellation
occurs at 1 rad/s in the subsidiary system.

Case 2—Added Damping. Damping can be added to the sy
tem by a further modification to reduce the ‘‘sharpness’’ of t
two poles on either side of the zero assigned in case 1. Of co
the damping does not have to be applied at the same coordina
the stiffness modificationk* . Figure 4 shows the effect of a
grounded dashpot,c* 50.2, at coordinate 3. In Fig. 5 the sam
dashpot is applied at coordinate 4. The effect of the two mod
cations on the 3rd and 4th poles is similar~the 2nd pole merges
with the zero at 1 rad/s when damping is added! but when the
index of the damping coordinate is eitherp or q ~4 or 5 in this
particular example! the zeros are unaffected and remain ‘‘sharp
This effect can be seen in Fig. 5. The damper may be app
between two coordinates instead of being grounded. The case
connection between coordinates 2 and 3 is shown in Fig. 6
coordinates 4 and 5 in Fig. 7.

Fig. 1 Six-degree-of-freedom spring-mass system
SEPTEMBER 2001, Vol. 68 Õ 793
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Fig. 2 Undamped receptance h 45
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Table 1 Poles and zeros of h 45

Poles
~rad/s!

Zeros
~rad/s!

0.684 1.000
0.911 1.000
1.286 1.414
1.640 2.000
1.970 `
2.117

Table 2 Zeros of h 45 for the modified system

Zeros
~rad/s!

1.000
1.058
1.500
2.227

`

EMBER 2001
Case 3—Damped System. Proportional dampingC50.05K
is applied and a modificationb* 50.46462 i 0.2584 at coordinate
3 is determined for the assignment of a zero at 1.5 rad/s. I
undesirable to make a negative-damping modification becau
would need to be applied actively and could destabilize the s
tem. Therefore a stiffness modificationk* 50.4646 is applied
without damping. The receptances before and after the modifi
tion are shown in Figs. 8 and 9. It is clear from Fig. 9 that t
stiffness modification results in a complex zero with an imagin
part close to 1.5 rad/s.

Experimental Example
A physical experiment was carried out using a steel beam

free-free and clamped-free~cantilever! configurations. The length
of the beam was 1.6 m with a rectangular cross section having
nominal dimensions of 2 cm breadth by 1 cm depth. Modal te
were carried out on transverse vibrations in the flexible directi

Free-Free Beam Experiments. In the first case a zero wa
assigned at 500 rad/s to a point receptance at a location 1
~coordinate 13! from the end of the beam where an added m
was applied~coordinate 1!. The point receptance of the unmod
Fig. 3 „a… Undamped receptance with an assigned zero at 1.5 rad Õs; „b… undamped
receptance for the subsidiary system of the zeros of h 45
Transactions of the ASME
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Fig. 4 Damped receptance—grounded dashpot at coordinate 3

Fig. 5 Damped receptance—grounded dashpot at coordinate 4

Fig. 6 Damped receptance-dashpot connected between coordinates 2 and 3

Fig. 7 Damped receptance-dashpot connected between coordinates 4 and 5
echanics SEPTEMBER 2001, Vol. 68 Õ 795
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Fig. 8 Receptance h 45 of the damped system

Fig. 9 Receptance of the damped system following modification by a grounded
spring at coordinate 3

Fig. 10 Measured receptances h 13,13 from the free-free beam; „a… before, modifi-
cation, „b… after modification
o
.

c
t

re-
hich
fied system is shown in Fig. 10~a! where it is seen that the zer
closest to the desired 500 rad/s occurs at around 590 rad/sec
clear from Eqs.~22!, ~29!, and~30! that measurements ofh1,1 h1,13
and h13,13 at 500 rad/sec are needed in order to determine
magnitude of the modification. Of course, the measurements
tained noise which was significant in the imaginary parts of
receptances because of very small damping present in the bea
EMBER 2001
It is

the
on-
he
m. A

fourth-order polynomial was fitted to the measured frequency
sponses over a range of frequencies from 400–550 rad/s w
resulted in the following estimates at 500 rad/s:

h1,1521.5477E205 22.2974E207i ,

h1,13528.7217E206 27.2866E208i ,
Transactions of the ASME
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Fig. 11 Measured receptances h 17,13 from the free-free beam; „a… before modifica-
tion, „b… after modification
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1 kg
at-
h13,13524.0974E206 25.0385E208i .

A modification consisting of a mass of 1.2926 kg together w
a dashpot of230.9432 Ns/m was determined for the assignm
of the zero to 500 rad/s. The calculated mass was then attach
the end of the beam. No attempt was made to apply the nega
damper, so that the zero of the modified system would be expe
to lie very slightly away from the imaginary axis of the eigenval
plane. The point receptanceh13,13 following mass modification of
the system is shown in Fig. 10~b! where it is indeed clear that th
zero has been successfully relocated close to 500 rad/s. High
lution of the frequency data achieved by ‘‘zooming’’ shows t
zero to be at 494 rad/s.

In a second study using the free-free configuration a zero
h17,13 was assigned to 450 rad/s by means of a mass modifica
at coordinate 1. Coordinate 17 was located at the other end o
beam. The following measurements were obtained from smo
ened data at 450 rad/s:

h1,1522.5655E205 24.0148E207i ,

h1,13521.1752E205 21.3706E207i ,

h1,1751.7008E205 12.6705E207i ,

h17,1353.9734E206 11.0998E207i ,

The computed mass and damping modifications were 0.200
and 21.5260 Ns/m, and a physical mass modification of 0.2
was applied. Figure 11 shows the cross receptanceh17,13 before
and after application of the added mass. In the initial~unmodified!
condition the zero is at around 500 rad/sec. High-resolution
quency data shows the zero at about 446 rad/s following mo
cation by the added mass.

Clamped-Free Beam Experiment. A zero of h13,13 was as-
signed to 500 rad/s by means of a mass modification at coordi
9 ~at midspan!. The following smoothened measurements we
obtained at 500 rad/s:

h9,9523.2156E207 21.2307E208i ,
echanics
ith
nt
d at
tive

cted
e

eso-
e

of
tion
the
th-

kg
kg

re-
ifi-

ate
re

h9,13524.8480E206 21.1843E208i ,

h13,13523.8839E206 23.3760E208i .

The computed mass and damping modifications were 0.698
and 22.1528 Ns/m. A mass of 0.698 kg was applied and its

Fig. 12 Beam with added mass
SEPTEMBER 2001, Vol. 68 Õ 797
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Fig. 13 Measured receptances, h 13,13 from the clamped-free beam; „a… before
modification, „b… after modification
a
m

p
t

u

e
U

ed

an-
J.

b-

a-

as.,

of

od

m

nd

nse

tan-

p-
st-

nd
tachment to the beam is shown in Fig. 12. A small rotary inertia
introduced by the physical application of the mass but is ha
very small effect as shown in Fig. 13 where the zero, initially
around 585 rad/s, is moved to 498 rad/sec~from high resolution
measurements! by the application of the added mass.

Conclusions
A method is proposed for the assignment of zeros in point

cross receptances by passive stiffness, damping, and mass
fications. The frequency responses of the zeros eigenvalue p
lem are determined from the frequency responses of the com
system and used to determine the magnitude of the modifica
The method is demonstrated in simulated experiments to as
the zeros of point and cross receptances in a physical beam
adding point masses.
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On Some Issues in Shakedown
Analysis
Shakedown analysis, and its more classical special case of limit analysis, basically
sists of ‘‘direct’’ (as distinct from time-stepping) methods apt to assess safety factor
variable repeated external actions and procedures which provide upper bound
history-dependent quantities. The issues reviewed and briefly discussed herein are
recent engineering-oriented and cost-effective methods resting on Koiter’s kinematic
rem and applied to periodic heterogeneous media; recent extensions (after the e
ones to dynamics and creep) to another area characterized by time derivatives, n
poroplasticity of fluid-saturated porous media. Links with some classical or more con
dated direct methods are pointed out.@DOI: 10.1115/1.1379368#
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1 Introduction
The main lasting contributions of Warner Koiter to mechan

are his elastic instability theory which explained post-buckli
behavior and imperfection sensitivity, and the kinematic theore
concerning the ‘‘adaptation’’ or ‘‘shakedown’’ of elastic-plast
solids under fluctuating external actions. The two preceding K
ter Lectures have been in various ways related to the former, m
monumental and elaborate area of Koiter’s contributions. This
is related to, and inspired by, the latter area of his work.

The inelastic behavior of structures subjected to repeated v
able loading, and possible consequent structural failures, hav
tracted the attention of researchers in engineering mechanics
as Hans Bleich and Ernst Melan, before plastic collapse of duc
structures~under loads assumed as monotonically amplified
time! was given a definitive theoretical and methodological ba
by Gvozdev, Prager, Drucker, Hill, and other founders of str
tural plasticity. The pioneering works appeared in the 1930s
those developed in the 1950s by Neal, Symonds, Koiter, and
ers were primarily aimed at establishing methods apt to prov
the critical ‘‘live load’’ multiplier, usually called ‘‘safety factor,’’
beyond which failure occurs by either incremental collapse
alternating plasticity, and below which the structure ‘‘shak
down,’’ in the sense that plastic yielding ceases after a while~or,
more precisely, the dissipated energy is bounded in time!. These
methods of shakedown analysis, like the more classical one
rigid-plastic limit analysis~with respect to plastic collapse unde
monotonic loading!, are frequently called ‘‘direct’’ or ‘‘simplified’’
methods, as distinct from the step-by-step procedures of inela
analysis along the whole time-history of loading.

Solution techniques marching in time have been for deca
and to some extent still are, in the main stream of researc
computational mechanics of solids and structures. However
favor of direct methods from a practical standpoint there
meaningful circumstances like the following ones.

~a! In many engineering cases, reliable information on varia
external actions concern not their time-history, but merely ran
within which they vary and are expected to show up again
again.

~b! Numerical solutions to practical nonlinear initial bounda
value problems of inelastic structural analysis were prohibit
before the advent of high-performance computers and pro

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received and accepted by the ASME Applied Mechanics
vision, February 28, 2001. Editor: L. T. Wheeler. Discussion on the paper shou
addressed to the Editor, Professor Lewis T. Wheeler, Department of Mecha
Engineering, University of Houston, Houston, TX 77204-4792, and will be accep
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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sional software, and are still expensive and discouraging i
number of engineering situations, especially for repeated para
ric studies often needed in preliminary structural design.

~c! Direct methods of shakedown analysis conceptua
~though not historically! represent generalizations of limit analy
sis, which is rooted in the remote origin of structural mechan
and engineering. This generalization, to a large extent, prese
the main features of limit analysis, namely its simplicity, elegan
and mathematical formalism~optimality properties, duality pat-
tern! and its practical appeal of providing information on the ca
rying capacity which are essential for a physical insight into
structural system and for its design.

Despite the significant developments in the methodology
computational tools of time-stepping inelastic analysis occurre
the last few decades, in view of the above motivations~a!–~c!,
direct methods for ultimate limit-state analysis can still be
garded as competitive in a variety of engineering situations. So
of the original severe limitations~such as the restrictions to ass
ciative perfect plasticity and to infinitesimal deformations! have
been, and are further being, relaxed. Remarkable progresses
been made also in the area of those direct methods which
intended to provide bounds on history-dependent quantities.
these developments have been fostered by, and fruitfully c
bined with, parallel developments in discretization techniqu
~particularly by finite elements and boundary elements! and in
inequality-constrained mathematical optimization in vector spa
~i.e., in mathematical programming!.

The theories and methods for direct analysis of structures un
repeated variable external actions~or, as a special case, unde
monotonic loading, as dealt with by limit analysis!, and their ori-
gin and growth, have been surveyed at diverse stages in var
publications after Koiter’s 1960 essay~@1#!: e.g., in the ‘‘ad hoc’’
textbooks by Ko¨nig @2# and Kamenjarzh@3# and in a number of
general and specific publications on plasticity,~e.g., @4–6#!. An
up-to-date abundant, though incomplete, bibliography can
found in a recent survey article~@7#!.

Here only a subdomain of the shakedown analysis area wil
considered and briefly discussed. This subdomain is believed t
representative of several current research topics in the area.
tions 3 and 4 are devoted to brief discussions of shakedown th
and bounding techniques, respectively, generalized to poropla
ity; these generalizations exhibit both similar and distinct featu
with respect to the extensions started long ago to dynam
namely to other situations characterized by the presence and
sential role of time derivatives in the governing field equatio
Preliminarily, as a hommage to Warner Koiter, some recent ap
cations of his kinematic shakedown theorem will be reviewed
Section 2. In the writer’s opinion these three topics are at pres
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among those open to and worthy of further research, with
pected new results of use in structural and materials enginee

2 Application of Koiter Theorem to Heterogeneous Pe-
riodic Solids

The following citations ~verbatim, to within slight notation
changes! from the conspectus of plasticity theory W. T. Koite
published in 1960~@1#! may provide a concise, still valuable bas
to shakedown~SD! analysis by a kinematic approach~t denotes
time, V volume of the body,St its unconstrained boundary!.

~I! ‘‘The concept of an admissible plastic strain rate cyc
«̇ i j 0

p (t) is defined by its characteristic property that the increme
of the plastic strains in such a cycle for some time intervaT
constitute a kinematically admissible strain distribution.’’

~II ! ‘‘The body will not shakedown, i.e., it will fail ultimately
by cyclic plastic deformations, if any admissible plastic strain r
cycle «̇ i j 0

p (t) and any external loadsbi(t),t i(t) within the pre-
scribed limit can be found for which

E
T
dtH E

V
bi u̇i0

p dV1E
St

t i u̇i0
p dSJ .E

0

T

dtE
V
F~ «̇ i j 0

p !dV

(2.1)

where F( «̇ i j 0
p ) is the plastic energy dissipation function in th

strain rate cycle«̇ i j 0
p (t). ’’

~III ! ‘‘The structure will shakedown if a numberm.1 can be
found with the property that, for all admissible plastic strain ra
cycles «̇ i j 0

p (t) and all external loadsbi(t),t i(t) within the pre-
scribed limits,

mE
0

T

dtH E
V
bi u̇i0

p dV1E
St

t i u̇i0
p dSJ ,E

0

T

dtE
V
F~ «̇ i j 0

p !dV.

(2.2)

The upper bound of such numberm is then obviously the factor
of safety with respect to shakedown.’’

~IV ! ‘‘An initial hope that the second shakedown theorem mig
facilitate shakedown analysis has not been confirmed by prac
applications’’~p. 108 of@1#!.

The above ‘‘second theorem’’ consists of statements~II ! and
~III !, both based on the concept defined at point~I!. Koiter had
formulated this theorem in a note~@8#! communicated by C. B.
Biezeno, his mentor, to the Dutch Royal Academy at the mee
of Dec. 17, 1955, defining it as ‘‘a new theorem, complement
to Melan’s’’ and apt to ‘‘be combined with Melan’s in order t
obtain upper and lower bounds for the allowable load variati
for shakedown.’’ A nontrivial historical scrutiny~far beyond the
present purposes! might trace its close roots in the work done b
Neal and Symonds at Brown University in the early 1950s~as
pointed out by a recent paper by Symonds in@6#!, and its remote
roots in the kinematic~‘‘unsafe,’’ ‘‘upper bound,’’ ‘‘dual’’ ! limit
theorem as a special case, and hence, to Galileo’s anticipation
in his last ‘‘Dialogue.’’

Ductile periodic systems such as perforated steel plates in p
erplants and metal-matrix composites adopted in aerospace
other, engineering situations, have been investigated from a
and SD analysis standpoint in several publications~referred to,
e.g., in @7#!. Noteworthy applications and extensions of Koit
theorems have been studied~e.g., in @9,10#! for temperature-
dependent material models in view of high temperature indus
situations, which have fostered also direct methods for the cr
range, e.g.,@11,12#. Here focus is on application of the abov
statements~I!–~III !, by a procedure which, in the writer’s exper
ence~@13–16#!, did recently confirm the ‘‘initial hope’’~IV ! ex-
pressed by W. Koiter 40 years ago. This particular procedur
briefly outlined below.

~i! In the space of average~or ‘‘macroscopic’’! stressesS i j ,
which are regarded as ‘‘loads,’’ the given regionV where they
fluctuate, and which represents the ‘‘loading domain,’’ is appro
800 Õ Vol. 68, SEPTEMBER 2001
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mated by a~hyper!polyhedronV̄. For the loading conditions cor
responding to all thev vertices of thiss i j

ek ~sayS i j
k , k51 . . .v!

polyhedron, the relevant linear-elastic response in terms of lo
‘‘microscopic’’ stress fields i j

ek(xr) over the representative volum
V are preliminarily computed by a conventional homogenizat
technique and finite element procedure~xr being the Cartesian
coordinates!.

~ii ! The kinematic admissibility required by the definition~I! in
the presence of texture periodicity, implies that the cumulat
plastic strain field« i j 0

p (xr) at the end of any cycle must be en
forced to satisfy the conditions

« i j 0
p ~xr !5Ei j 0

p 1
1

2 S ]

]xi
ũj 01

]

]xj
ũi0D ,

xrPV, ũi0~xr ! periodic on S (2.3)

where subscript 0 marks variables belonging to an admiss
plastic strain rate cycle~briefly ‘‘admissible cycle’’ AC! in the
sense specified by~I!; Dũi represents a displacement field over t
representative volumeV obeying periodicity conditions to be im
posed on the boundaryS of V;DEi j

p are average~macroscopic!
strains constant overV.

~iii ! The sufficient~II ! and necessary~III ! inadaptation condi-
tions combined, as usual in SD analysis, reduce the search fo
SD limit or safety factors to the minimization of the dissipated
energy, sayD, cumulative in space and time along the admissi
cycle, after the normalization which sets equal to 1 the exter
work done by the loads because of the AC considered. This w
can be expressed in two forms:

D5E
0

T

dtE
V
s i j

e «̇ i j 0
p dV5E

V
(

1

v

ks i j
ek~xr !D« i j

pk~xr !dV51.

(2.4)

Because of the virtual work principle, the former expressi
~where the average stress input is reflected by the linear ela
stress response to it,s i j

e , overV! equals the external works due t
the AC. The latter expression, where the time integral becom
sum, is justified by a SD theorem which ensures that shaked
occurs under a~hyper! polyhedrical load domain if it does unde
the sequence of loads corresponding to itsv vertices~@17#! and,
hence, permits to materialize any admissible cycle in the sens
~a! as a sequence of incrementsD« i j

pk(xr), k51 . . .v. Consis-
tently with the adopted finite element model, Gauss integrat
reduces to a sum the space integrals in Eq.~2.4!.

~iv! The minimization of the dissipated energyD has to be
performed over the set of all admissible cycles, namely with
spect to: the displacement vectorŨ governing the modeled field
ũi0(xr), account taken of the periodicity onS; the overall strain
tensorEi j 0

pk ; the cycle incrementsD« i j 0
pk (xr

h),k51 . . .v, the new
indexh running over the set of Gauss points in the whole volu
V. The constraints to be enforced result from Eqs.~2.3! and~2.4!,
suitably algebrized according to the space discretization adop

~v! The mathematical features of the minimization problem
rived at depend on the constitutive models locally attributed to
~individually homogeneous! constituents in the representative vo
ume V. If Mises-Huber associative perfect plasticity is assum
for all the phases, then the global dissipated energy turns out t
a convex function, nondifferentiable~‘‘nonsmooth’’! in the origin;
the plastic incompressibility~entailed by the normality in flow
rules! is expressed by a linear equality constraints in every Ga
point h and for all stepsk in the admissible cycle.

~vi! The mathematical programming problem formulated by
above path, can be numerically solved by a variety of algorith
now available as commercial software. The one ‘‘ad hoc’’ orig
nated by Y. G. Zhang@18# and adopted in@13–15# rests on penal-
ization for plastic incompressibility and on Lagrangian multiplie
for the other constraints. This algorithm solves the nonl
Transactions of the ASME
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ear stationarity equations for the Lagrangian by an iterative p
cedure, at each step of which linear equations are solved by u
results from the preceding iteration and user-available factors
fixing denominators proportional to the current local dissipatio

The above outlined procedure can provide various kinds
technical information, some examples of which are shown in F
1 and 2, for a perforated steel plate interpreted as a plane s
system and for a ductile composite, respectively, with Mis
Huber perfectly plastic materials~in the latter case the yield stres
being s0

m and s0
f 58.7s0

m , for matrix and fibers, respectively!.
Although it rests on Koiter’s classical statements~II ! and~III !, this
direct method exhibits various aspects~pointed out below! which
appear to be worth noting at the present development stage o
analysis and are in parts distinct from their counterparts in o
kinematic approaches to similar kinds of engineering proble
~e.g., see,@19–22#!.

~a! The heterogeneity periodicity, dealt with in the spirit
homogenization theory, is accounted for both in the prelimin
linear elastic computations ofs i j

ek and in the search for the SD
limit s. It plays a twofold role: first, in terms of the bounda
conditions on the representative volume; second, through Eq.~3!,
at the end of the admissible cycles according to definition~I!.
Computational savings are obviously implied by the formulat
of the SD analysis on the~minimum! representative volume
singled out on a statistical basis or in view of the strict microstr
tural periodicity assumed here.

~b! The penalty approach to the enforcement of the plastic
compressibility constraint~at each stepk of any admissible cycle!
can be regarded primarily as a provision apt to avoid or atten
‘‘locking’’ manifestations. From this standpoint, it represents
alternative to reduced integration, and to mixed finite elem
modeling~see, e.g.,@16#! and, in particular, to multifield modeling
in Prager’s generalized variables considered herein in Sectio
Locking due to the combination of constitutive and modeling
nematic constraints, and its unconservative consequences,
met early in computational limit analysis, but, clearly, are e
pected to occur in shakedown analysis as well. Penalization
merely be interpreted as a way to enforce constitutive kinema

Fig. 1 Shakedown analysis of a perforated plate: „a… represen-
tative volume and finite element mesh; „b… shakedown limit
locus „solid line … in the average stress plane for rectangular
loading domains like those defined by points A and B; for com-
parison, the plastic collapse locus in dashed lines „s0 being
the material yield stress …
Journal of Applied Mechanics
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in a ‘‘soft’’ average way. The pros are: compatibility with trad
tional simple FE methods centered on displacement modeling
increase in the optimization variables~contrary to the implications
of the Lagrange multiplier approach!. The main contra of the pen
alty method is the empiricism underlying the choice of the pena
factors or factorf ~a single factor for an overall violation norm
turned out to be suitable, in the writer’s experience!. As expected
and as visualized in Fig. 3, a very highf leads to either locking
manifestations or numerical instability, a very lowf to kinematic
relaxation and consequent conservative but erroneous SD li
~@13#!. The range of penalty factors leading to reasonably accu
solutions can be determined only empirically, by comparative
merical tests, and depends primarily on the tackled problem
the adopted material model~e.g., for the same Prandtl’s indenta
tion problem, it turned out to cover various orders of magnitu
with Mises models, much less with Drucker-Prager’s and Pan
Zienkiewicz’s models for frictional materials!. Fortunately for in-
dustrial applications, the suitable range can be estimated onc
all for each kind of problems~e.g., hexagonal representative vo
ume of fiber-reinforced composites~@14,15#! defective pipelines
~@13#!!, since it is fairly insensitive to details such as geometry a
finite element mesh.

~c! The iterative solution technique above mentioned at st
~vi! involves ~at least two! further parameters to be assumed
empirical basis~one for selecting at each iteration the yieldin
Gauss points, the other for replacing a vanishing denominato
the nonyielding points!. After tuning the procedure also as fo
these tolerances, fast convergence was observed, though not
retically corroborated by proof.

~d! The validation of the particular kinematic method consisti
of phases~i!–~vi! has been achieved by comparisons with ear
results by diverse approaches~e.g., @23–25#! and with computa-
tions carried out step by step by means of a commercial nonlin
finite element code, with reference to defective pipelin
~@13,26#!, and to heterogeneous solids like perforated plane-st
plates and fiber-reinforced composites~see@14,27# and illustrative
examples of Figs. 1–3!.

~e! Computing costs of the direct kinematic method, with r
spect to those of time-marching inelastic analysis, were found
be reduced by a small factor~say 2 or 3! for the special case o
limit analysis, but by one or two orders of magnitude for S
analysis, in view of the trial-and-error strategy required to eva
ate SD limits by step-by-step computations. The above partic
kinematic SD analysis method was ascertained to be cost-effe
in engineering practice, but not necessarily superior to other
cently proposed direct methods. In particular, e.g., the direct ite
tive method consisting of repeated linear analyses with suita
modified elastic moduli~see, e.g.,@28,29#! exhibits the theoretical
appeal of a convergence proof and the practical advantage o
ing commercial general-purpose computer codes.

As a conclusion of this section, it can probably be said that
Koiter’s hope expressed in~IV ! is confirmed nowadays, at least i
view of the direct method outlined in what precedes, but proba
also in view of others, among the various methods devised in
last decade.

The spreading applications of SD concepts to heterogene
solids and in particular to periodic composites as seen ab
might be beneficial to other areas of materials mechanics, wh
multiscale approaches have become fashionable and promi
‘‘in primis’’ to fatigue criteria.

Daniel Drucker wrote in 1963~@30#!: ‘‘When applied to the
microstructure there is a hope that the concepts of endurance
and shakedown are related, and that fatigue failure can be re
to energy dissipated in idealized material when shakedown d
not occur.’’ Recent research works by Dang Van and others@31#
seem to confirm this far-sighted thought. In fact, connections h
been established between fatigue crack advancement at the
SEPTEMBER 2001, Vol. 68 Õ 801
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Fig. 2 Shakedown analysis of a metal-matrix composite subjected to uniaxial
average stress S: „a… representative volume; „b… incremental collapse mecha-
nism for uÄ30 deg; „c… shakedown limit „solid line SDA … versus plastic collapse
limit evaluated by the present kinematic method „dashed line LA … and by
the static method in †71‡ „dotted line … „s0

m being the matrix yield stress …; „d…
convergence on the shakedown limit in the former procedure with penalty
factor 10 6
c

g

c
c
t

lly

asi-
ds
in-

ble
of

led
tic-
rlier

o-
At

rise
y in
l en-
n of
ting
onry
rn
-
ted

an
r

ary

d in
-

roscopic level on one side and lack of shakedown at the mi
scopic level on the other, through appropriate microstructu
modeling of polycrystal metals.

Material ratchetting, in particular of metals under severe cyc
thermal loading, is also being successfully interpreted in the li
of shakedown theory at the microscale~@32,33#!. This can be re-
garded as another recent case of the scale interaction advo
about 40 years ago in a further, more general sentence by Dru
‘‘Phenomenological theory never really answers a ques

Fig. 3 Influence of the penalty factor on the plastic collapse
limit „dashed line … and on the violation „measured by a norm of
the plastic volumetric strain field … of the normality constraint
„solid line …
MBER 2001
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‘‘why’’? The microscopic and the macroscopic views are mutua
dependent and should interact at all levels’’~@30#!.

3 Shakedown Analysis in Poroplasticity
After almost three decades since their extension from qu

static to dynamic plasticity, in the last few years direct metho
have been studied in another context where field equations
volve time derivatives, namely in the mechanics of deforma
porous media saturated by a viscous liquid, the filtration motion
which interacts with the deformations of the solid skeleton.

The classical and lasting theoretical foundations of coup
~fluid-solid! problems are represented by Biot’s linear poroelas
ity theory shaped mainly in the 1940s. Almost two decades ea
pioneering works due to Terzaghi, Fillunger, and others were m
tivated by geotechnical and dam engineering problems.
present, motivations for further developments in this area a
from a number of diverse technologies such as slope stabilit
geotechnical engineering; subsidence control in environmenta
gineering; biomechanics of bones and soft tissues; exploitatio
oil and gas deposits; design and rehabilitation of new and exis
earth dams; and, in the presence of diffused cracks, also mas
and concrete dams~the illustrative examples of Figs. 4–6 conce
two simplified models of gravity dams!. Comprehensive treat
ments of the accumulated knowledge concerning fluid-satura
~fully or partially! linear, and nonlinear inelastic porous media c
be found, e.g., in@34#, together with time-marching procedures fo
numerical solutions of poroelastic and poroplastic initial bound
value problems.

Direct methods of poroplastic analysis have been develope
the last few years~@35–37#!, so far under the restrictive hypoth
eses which follow:~a! linear kinematics;~b! quasi-static regime;
Transactions of the ASME
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~c! full saturation of solid skeleton by a single viscous liquid;~d!
permeability constant in time; and~e! material stability in Drucker
sense, implying associativity of flow rules.

The field equations express equilibrium of ‘‘total’’ stressess i j
~total in the sense that they concern the two-phase, ‘‘bulk’’ sol!,
geometric compatibility between strains« i j and displacementsui

Fig. 4 Incremental collapse mechanism with relevant Mises-
equivalent plastic strain rate field „a… for an idealized gravity
dam interpreted as a poroplastic system under periodic live
load „b a…

Fig. 5 Self-adaptive limit analysis governed by a normalized
measure of the plastic strain rate density of the collapse
mechanism in piecewise-linearized plasticity
Journal of Applied Mechanics
d

of the solid skeleton, conservation of the fluid mass, and Darc
filtration law. These field equations involve the variation of flu
contentz and the fluxqi ~defined as accumulated liquid volum
per unit bulk volume and, respectively, per unit time and u
crossed area orthogonal to axisxi!. Darcy law relates the flux to
the gradient of pressurep through the permeability tensorki j
5kji . The external actions include: data on the boundaryS~given
displacement onSu and traction onSt , with StøSu5S and
StùSu5$B%; given pressure onSp and flux on Sq , with
SqøSp5S and SqùSp5$B%!; bulk body forces; and specific
weight of the fluid~per unit liquid volume!. The initial conditions
can merely concern the pressure field over the volumeV of the
considered system.

The constitutive law at the macroscopic, phenomenolog
level, to be combined with the preceding field equations, rela
static quantitiess i j andp to their work-conjugate kinematic one
« i j andz. Like in elastoplasticity, each one of the latter variabl
is assumed to be the sum of a reversible, poroelastic addend
an irreversible, poroplastic addend~marked by superscriptse and
p, respectively!. The poroelastic addends are linearly related to
static variables according to Biot’s model, namely$« i j

e ,ze%
5C$s i j ,p%, C being a~positive-definite, linear, symmetric! alge-
braic operator which, for isotropic materials, is governed by fo
material parameters.

The irreversible~‘‘plastic’’ ! addends« i j
p and zp are governed

by nonholonomic relationships in rates. Like in structural elas
plasticity, see, e.g.,@38–40#, in order to simplify theoretical and
numerical developments for SD analysis, the poroplastic mo
can be given a ‘‘piecewise linear’’~PWL! approximation as
follows:

wa5Ni j a
s s i j 1Na

pp2Ya<0, Ya5Ya
01Hablb (3.1)

«̇ i j
p 5Ni j a

s l̇a , żp5Na
pl̇a (3.2)

l̇a>0, wal̇a50, ~a,b51 . . .ny! (3.3)

where the quantities denoted byN, Y0, andH are constants and
Ya

0 represents the~positive! initial ‘‘yield limit’’ of the ath mode.
Interpreted in the$s i j ,p% and $« i j

p ,zp% spaces superposed, th
poroelastic domain is the convex~hyper! polyhedron consisting of
the intersection of theny half-spaceswa<0. Each yield plane
wa50 (a51 . . .ny) is defined by its unit normal$Ni j

s Np%a and
by its distance from the origin, namely by the current yield lim
Ya . Generally, theath yield plane translates at yielding of mod
b51 . . .ny ~forwards or backwards, depending on the sign
Hab!; its possible contribution to plastic ‘‘deformations’’$« i j

p ,zp%
is directed as the~fixed! gradient$Ni j

s ,Np%a of the relevant yield
function and plastic potentialwa .

The symmetry of the ‘‘hardening matrix’’Hab is entailed by the
adoption of a ‘‘locked-in, free energy’’ potential for the intern
variables, which in the above PWL models identify with the pla
tic multipliers la . However, a nonsymmetric hardening matr
may be directly introduced in the definition ofwa , ~Eq. ~1a!!.
Like in plasticity ~@39#!, matrix Hab is apt to represent divers

Fig. 6 Upper bounds on the residual displacement at the top
of the idealized poroplastic dam model of Fig. 4, as a function
of the mesh refinement „point A corresponds to the finite ele-
ment mesh shown in Fig. 4 …
SEPTEMBER 2001, Vol. 68 Õ 803
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types of hardening~kinematic, isotropic and mixed, with or with
out saturation!; its positive semi-definiteness, together with no
mality, implies material stability in Drucker’s sense.

In the present PWL context, under the practically weak assu
tion that Ya

0 and V are bounded, the energy characterization
shakedown is readily seen to be provided by the boundedne
time of the plastic multipliers everywhere inV. On this basis
~restricted for convenience, but endowed with all essential
tures of more general approaches!, the two statements which fol
low can be proven~@35,36#!. They represent a generalization
poroplasticity of Melan’s static SD theorems, which in turn can
regarded as generalizations of the static theorems of limit anal

~I! Shakedown does occur if internal variables~in PWL models
la , a51 . . .ny! and a steady-state poroelastic response to fi
tious imposed constant strains« i j

p ~specifically, consequent con
stant self-stressess i j

s ! exist such that the superposition of it and
the fictitious poroelastic response~marked by superscrip
E:s i j

E ,pE! to the external actions, after a timet* , strictly satisfies
the constitutive yield inequalities.

~II ! If the poroplastic system shakes down in the sense
dissipative inelastic phenomena cease after a timet* , then there
are internal variables and time-independent self-stresses such
the superposition of the latter on the poroelastic response~super-
script E! after a timet* satisfies the yield inequalities~strictly
with arbitrarily slight increases of the yield limits!.

These statements are formally similar to those which exten
hardening~e.g.,@41–45#! Ceradini’s generalization of the ‘‘static’
Melan’s theorems to dynamics in classical perfect plastic
~@46#!. A substantial similarity might be noted between the kin
matic poroplastic SD theorems~dual to I and II, see@36#!, not
discussed herein, and the generalizations to dynamics of Koi
theorems~Section 2! established in@47,48# for traditional plastic-
ity and further developed, e.g., in@41,45,49,50#. In fact, the fluid
turns out to influence the behavior of the system only through
fictitious poroelastic response to the variable loads~like inertia
and damping in dynamics!. Under the given loading history, cap
tured in that fictitious response, SD arises from the capacity
residual stresses, generated by inelastic strains in the skeleto
eventually become time-constant self-stresses apt to stop
yielding processes; the time-independence of imposed strain« i j

p

and of irreversible changes in fluid contentzp prevents any influ-
ence of them on the fluid motion~provided the permeability is no
affected by them!.

Like for Koiter’s theorems of Section 2, the weak assumpt
~Lyapounov stability! that infinitesimal perturbations of yield
limits have consequences of the same order on the SD lim
legitimates the transition from strict to weak inequalities in t
sufficient SD condition and the consequent identification of t
with the necessary condition in the operative formulations of
analysis.

Space discretization of the system is a natural first step tow
numerical solutions. Among various approaches available now
computational mechanics, the one used in the first implementa
of SD analysis in poroplasticity was mixed finite element mod
ing ‘‘in Prager’s generalized variables’’~i.e., such that in each pai
of work-conjugate fields, the interpolation are related to ea
other in such a way that the scalar product is preserved with
possible energy meaning!. This approach, resting on its variation
basis expounded in@51#, exhibits the combined appeals of avoi
ing locking ~see Section 2! and of conferring to the discretize
description the essential features~symmetry and sign-definitenes
of key operators! of the continuum formulations. The latter prop
erty legitimates theoretical developments in the space-disc
context.

After the finite element discretization, the search for the
limits based on the static theorems~I! and ~II ! can be formulated
as follows~@35,36#!:
804 Õ Vol. 68, SEPTEMBER 2001
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s5 max
m,s̄s,l,t*

$m%, subject to:

@Ns
TsE~t!1Nr

TpE~t!#m1Ns
TsS<Y01Hl,

CTsS50 ;t>t* . (3.4)

Here boldface symbols represent matrices and vectors conc
ing the whole finite element model, account taken of the bound
conditions; the vectorss, p, l, andY0 govern the space distribu
tion of stress, pressure, plastic multipliers, and original yield li
its, respectively; superscriptsE andSdenote poroplastic respons
and self-equilibrium, respectively, the latter being expressed
the equality constraints in problem~3.4!. The inequality con-
straints reflect the yield conditions~3.1! throughout the model.
The load factorm concerns the fluctuating live loads, being u
derstood that possible ‘‘dead’’ external actions constant in tim
after a transient supposed to be immaterial, merely contribu
time-constant addend to the vectorY0 of the generalized origina
yield limits.

Let the ‘‘envelope vector’’M[$ . . . Ma . . . %T be defined as
follows, indexa running over the set of allny yield modes in the
whole discrete model:

Ma~t* !5 max
t>t*

$~Ns!a
TsE~t!1~Np!a

TpE~t!%. (3.5)

If a time t* is fixed and no longer considered an optimizati
variable, vectorM defined by Eq.~3.5! becomes constant; the
the optimization problem~3.4! reduces to linear programmin
~LP! and, clearly, provides a lower bound on the safety factors:

s>s* ~t* !5 max
m,ss,l

$m%, subject to:

mM ~t* !1Ns
TsS<Y01Hl, CTsS50. (3.6)

The following remarks may elucidate potentialities and limit
tions of the above formulated static SD analysis in poroplastic
and are also intended to survey some peculiar features of its
sical counterpart in plasticity, as a special case of it.

~A! A theoretically and practically crucial question on Eq.~3.6!
is how to choose the instantt* such that the LP problem yield
the SD limit ~i.e., s* 5s!. This purpose can easily be achieved f
the following kinds of loading histories.
~i! Periodic external actions: after a transient which depends
the initial conditions and becomes negligible after a few perio
the fictitious poroelastic response becomes periodic~and can be
computed efficiently in closed form~@36#!!. As for SD the tran-
sient is immaterial and, therefore, the periodic poroelastic
sponse above can be used in Eq.~3.5! with t* 50 and leads to
s* 5s in Eq. ~3.6!.
~ii ! Intermittent actions, which~like earthquakes! materialize in a
set of known loading histories with relatively brief duration, sep
rated by the same steady-state~like the initial one! under dead
loads only. If the poroelastic responses to all those histories
sequence are employed in Eq.~3.5!, Ma computed fort* 50
becomes independent from the sequential order and, hence
becomess* , which coincides withs. In elastic-plastic dynamics
intermittent excitations have been studied by Polizzotto and
workers, with the denomination of ‘‘unrestricted’’ SD~@44,45#!.

~B! Hardening material models involve internal variables in t
SD criteria and, hence, in the search for the safety factor by m
ematical optimization. In the PWL formulation~3.6!, the internal
variables coincide with thela and these govern through Eq
~3.2a! the plastic strains, which in turn can be conceived as
physical sources of self-stressesss. Therefore,ss can be ex-
pressed as linear consequences of vectorl:ss5ZNsl, denoting
by Z the ~symmetric, negative semi-definite! influence matrix.
However, the effort of computingZ and the possible algorithmic
difficulties caused by numerical noise in its many zero eigenv
ues, may more than balance the gains due to the reductio
Transactions of the ASME
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variables. An obvious alternative rests on expressingss in terms
of redundants through the equilibrium equations in~3.6!. Both the
above variable reductions in large-size LP problems seem to
hibit an algorithm-dependent, often balanced set of pros and c
at least in perfect plasticity~i.e., for H50!. As well known and
expected in all contexts of SD analysis, hardening may stron
influence both the SD limit and the collapse mechanism~e.g.,
kinematic hardening without saturation prevents ratchetting
entails alternating plasticity!. A number of results achieved o
nonlinear hardening in plasticity~see, e.g.,@41–43,52#! can easily
be transferred to poroplasticity. The same can be said for re
results concerning damage~@53–56# and cracks@57,58#!.

~C! The solid skeleton is a frictional material in most engine
ing situations amenable to poroplasticity. This implies that
yield functionswa depend on the first stress invariant and a
distinct from the plastic potentials~say wa! primarily to avoid
excessive dilatancy. The latter consequence, nonassociativity
easily be allowed for PWL approximations in poroplasticity~@36#!
like in plasticity, see, e.g.,@38,42,49,59#. In fact, two ‘‘fictitious
associative materials’’ can be generated~i! by ignoring the devia-
tion from normality and~ii ! by assuming as poroelastic deform
tion the maximum polyhedron contained in the actual domain
having as outward normals the gradients of the plastic potent
The linear programs, formulated like in Eq.~3.6! but on the basis
of model ~i! or ~ii !, lead to~unfortunately often loose! upper and
lower bound ons, respectively.

~D! External actions interpreted as growing slowly and mon
tonically up to values constant in time, after the extinction o
transient regime, give rise to a time-independent poroelastic s
If the relevant~constant in time! stress and pressure vectors a
introduced in Eq.~3.5!, problem~3.6! with H50 ~perfect plastic-
ity! yields the safety factors with respect to plastic collapse, i.e
it defines the carrying capacity of the modeled poroplastic sys
asymptotically in time. In other terms, the present SD analy
specializes to limit analysis by a static approach generalize
PWL poroplasticity. A remarkable feature of limit analysis in th
above sense is that the relevant safety factor may turn out t
less than the safety factor with respect to live loads, fluctua
between zero and the same peak value, an impossible occur
in plasticity. In other terms, the motion of the fluid in it ma
increase the carrying capacity of a poroplastic system; moreo
the growth of its frequency may reduce the SD limit in oth
circumstances~@36#!.

~E! From the computational standpoint direct methods h
been recently enriched with various valuable contributions, e
see~@21,22,60#! and references in@7#. In the present context, firs
it is worth noting that the generation of PWL constitutive law
entails a computing cost which is generally more than comp
sated by the savings due to the transition from nonlinear to lin
programming. Problem~3.4! may substantially be reduced in siz
by tentatively ignoring every yield modea for which Ya2Ma
exceeds a pre-assigned tolerance~i.e., whose maximum projection
Ma is sufficiently far from the relevant yield plane, so that this
unlikely to be active!. The neglected yield inequalities which tur
out to be violated by the stresses resulting from the first t
solution are reconsidered for another solution, see, e.g.,@61#. Self-
adaptivity as an effective source of computational economy
only recently investigated in the area of direct methods~see, e.g.,
@60,62,63#!. In our experience, satisfactory results are achieve
two-dimensional cases by the simple technique of mesh refi
ment, specifically by bisection of the longest side of triangu
finite elements governed by a suitable norm of plastic strains
longing to the collapse mechanism provided by the solution of
dual to problem~3.6!.

The illustrative example of Fig. 4 corroborates remark~D!. The
drastically idealized plane-strain dam model shown in Fig. 4~a! is
formulated with material data, boundary conditions and mixed
discretization adopted in@36#, in particular: Drucker-Prager asso
ciative poroplasticity in ‘‘effective’’ stresses; PWL-approximatio
by 8 yield planes; impervious foundation; 25 m ‘‘overtopping
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live load ~additional to self-weight and hydrostatic pressure! rep-
resented by uniform pressure on the upstream wall. Under flu
ating live load~Fig. 4~b!-a! with period of three days, the safet
factor iss52.57. The incremental collapse mechanism~obtained
from the solution of the dual LP! is visualized in Fig. 4~a!. Under
monotonically increasing live load~Fig. 4~b!-b! up to the same
overtopping level~of 25 m!, the safety factor turns out to b
s52.47.

Remark ~E! is illustrated by Fig. 5 where the simple sel
adaptivity mentioned in~E! with ‘‘longest side’’ remeshing strat-
egy, is applied to the limit analysis~as a special case of SD analy
sis! of another dam model. The four meshes shown there~5~a!–
~d!!, are correlated in the graph to the growth of the number
optimization variablesss, in the solution of problem~3.6! with
H50, and to the improvement~decrease! of the critical overtop-
ping height, i.e., of the safety factor.

The above brief review of recent developments in poropla
SD analysis has given rise to remarks mostly applicable to
whole area of direct methods. Peculiar of this new subarea
poroplasticity are its needs for research~now in progress! at least
on the following issues: relaxation of the restrictive assumptio
of full saturation and of constant permeability and provisions
limited ductility of the solid skeleton. As for the last requireme
~which of course arises for direct methods in plasticity as well!, a
promising approach is a combination of limit and deformati
holonomic analysis: with constitutive piecewise linearizatio
even in the presence of softening~i.e., for any matrixHab!, this
approach leads to optimization under complementarity c
straints, a fashionable topic of current research in mathema
programming.

4 Upper Bounds
Shakedown analysis may be nonconservative when some o

idealizations on which it rests are violated. Let us consider
particular the following hypotheses:~a! ‘‘small’’ deformation and
serviceability within SD ranges;~b! unlimited ductility; and~c! in
poroplasticity, linear diffusion equation, i.e., permeability consta
in time. Remedies to the above possible unconservativeness,
consequence of invalidation of some basic assumption, may
found still in the area of direct methods, precisely in methods
to provide upper bounds on the post-SD values of meanin
quantities which depend on the whole history of the inelastic s
tem. Upper bounds on meaningful residual displacements, pla
strains and volumetric plastic strains in representative cru
points, if they turn out to be lower than critical thresholds, gu
antee that the above hypotheses~a! ~b! ~c!, respectively, are actu
ally acceptable in the engineering situation considered; otherw
they may give guidelines for suitable adjusted reformulations
iterated solutions of the SD analysis problem, or they may ind
recourse to costly time-stepping analyses.

A variety of bounding techniques in the above sense were
tablished since the early 1970s, especially in dynamics and
viscoplasticity and creep, e.g.,~@11,12,64–70#!. In fact, the time-
dependence of the system reduces the applicability of SD con
~e.g., SD in the present sense clearly occurs under impact load
it would do with unrealistic isotropic hardening without satur
tion!. Beyond the present purposes would be a survey of bou
from those based on ‘‘dummy loads’’ to their unifying generaliz
tions using ‘‘perturbation parameters’’~e.g.,@65#!, to those emerg-
ing from ‘‘ad hoc’’ energy considerations, and, finally, to the b
lateral ones like in@66#.

In the framework of the space discretization and constitut
piecewise linearization adopted in Section 3 for poroplastic
analysis, the actual post-shakedown value of a meaningful
placement or plastic strain turns out to be a linear function of
post-shakedown generalized plastic multiplier vectorl̄.

In this context several upper bounds on these quantities h
recently been established using the condensation of varia
mentioned at~B! in Section 3. After the SD analysis by LP leadin
SEPTEMBER 2001, Vol. 68 Õ 805
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to the safety factors, the solution of a min-max problem in th
space of vector$l* ,l%, provides the most stringent upper boun
The lower bound which is likely to often attain the best comp
mise between the requirements of accuracy and comp
economy, encompasses two phases: convex quadratic prog
ming in l* ; linear programming inl. For the residual horizonta
displacement of the crest point P in the dam model of Fig. 4~a!,
under periodic overtopping load~Fig. 4~b!-a! with amplitude
equal to half the SD limit~but beyond the poroelastic range!, the
bound resulting from the above procedure is plotted in Fig
versus the dimensionality of vectorl ~andl* !. It is worth noting
that the mesh refinement~here without self-adaptivity like in Fig.
5! significantly improves the bound, which converges on 4.75 c
while the ‘‘actual’’ displacement computed by time-marchin
analysis amounts to almost 2.6 cm.

5 Conclusions
‘‘Research in engineering science cannot be considered t

completed until its full numerical evaluation has been obtain
and the results have been presented in a form accessible to
engineers.’’ This sentence of Warner Koiter in the ‘‘Festschri
for his 65th anniversary suggests a criterion for assessing the
turity of recent developments in shakedown analysis, at leas
areas related to the issues considered in this paper. Nowa
available numerical evaluations are probably sufficient to corro
rate the competitiveness and, in some cases, superiority o
lected direct methods~like the ones considered in Section 2! with
respect to time-stepping methods in engineering analysis of
tile, elastic-plastic, and stable~in Drucker’s sense! structures and
microstructures exposed to persistent yielding under variable
peated external actions. This remark holds not only in the orig
classical context of quasi-static perfect plasticity, but also for v
ous generalizations scattered along the last three-four decade
primis’’ extensions to dynamics, hardening, geometric effects,
creep. Time is ripe for implementations into practical engineer
tools ‘‘presented in a form accessible to other engineers.’’ S
presentation advocated by Koiter should cover also carefully
lected modern algorithms of mathematical programming, unus
so far in commercial software for structural and mechanical en
neering~though they might be in common with software for o
timum design and parameter identification!. The practicalness re
quires putting to work contributions dispersed in the literatu
such as those concerning self-adaptivity and remeshing, redu
of yield mode number, discontinuities at finite element interfac
and anti-locking provisions.

Research is certainly not completed in the new area of cou
problems, where the severe limitations of the extensions surve
in Section 3 and 4 should~and are being! overcome in view of
reliable engineering applications. A priori shakedown criteria
real practical interest are still to be found, despite many valua
research results for situations characterized by finite strains, d
age, cracks, and softening behavior.

In the case of shakedown analysis, and more generally of d
methods for ultimate state analysis, the appealing challenge in
years to come appears to be the generation, on a unifying the
ical basis, of practical computing tools, versatile enough to p
vide both physical insight and quantitative essential informat
on the load-carrying capacity with respect to incremental a
plastic collapse, low and high-cycle fatigue and possible wea
well, of diverse systems, such as infrastructures and building
seismic areas, structural components of power plants, dams,
shore structures, pavements and rails, and textures of materia
the microscales.
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~Strojnı́cky Časopis!, 50, No. 4, pp. 229–240.

@15# Carvelli, V., Maier, G., and Taliercio, A., 2000, ‘‘Kinematic Limit Analysis o
Periodic Heterogeneous Media,’’ Comp. Meth. Eng. Sci.,1, pp. 15–26.

@16# Casciaro, R., and Cascini, L., 1982, ‘‘A Mixed Formulation and Mixed Fin
Elements for Limit Analysis,’’ Int. J. Numer. Methods Eng.,18, pp. 211–243.

@17# König, J. A., and Kleiber, M., 1978, ‘‘On a New Method of Shakedown Anal
sis,’’ Bull. Acad. Pol. Sci., Ser. Sci. Tech.,26, pp. 165–171.

@18# Zhang, Y. G., 1995, ‘‘An Iterative Algorithm for Kinematic Shakedown Analy
sis,’’ Comput. Methods Appl. Mech. Eng.,127, pp. 217–226.

@19# Kamenjarzh, J. A., and Merzljakov, A., 1994, ‘‘On Kinematic Method
Shakedown Theory; I. Duality of Extremum Problems; II. Modified Kinet
Method,’’ Int. J. Plast.,10, pp. 363–392.

@20# Kamenjarzh, J. A., and Weichert, D., 1992, ‘‘On Kinematic Upper Bounds
the Safety Factor in Shakedown Theory,’’ Int. J. Plast.,8, pp. 827–837.

@21# Sloan, S. W., and Kleeman, P. W., 1995, ‘‘Upper Bound Limit Analysis Usi
Discontinuous Velocity Fields,’’ Comput. Methods Appl. Mech. Eng.,127, pp.
293–314.

@22# Teixeira de Freitas, J. A., 1991, ‘‘A Kinematic Model for Plastic Limit Analy
sis of Solids by the Boundary Element Method,’’ Comput. Methods Ap
Mech. Eng.,88, pp. 189–205.

@23# Dvorak, G. J., Lagoudas, D. C., Huang, C. M., 1994, ‘‘Fatigue Damage
Shakedown in Metal Matrix Composite Laminates,’’ Mech. Compos. M
Struct.,1, pp. 171–202.

@24# Francescato, P., and Pastor, J., 1997, ‘‘Lower and Upper Numerical Boun
the Off-Axis Strength of Unidirectional Fiber-Reinforced Composites by Lim
Analysis Methods,’’ Eur. J. Mech. A/Solids,16, pp. 213–234.

@25# Weichert, D., Hachemi, A., and Schwabe, F., 1999, ‘‘Shakedown Analysis
Composites,’’ Mech. Res. Commun.,26, pp. 309–318.

@26# Liu, Y. H., Cen, Z. Z., and Xu, B. Y., 1995, ‘‘A Numerical Method for Plasti
Limit Analysis of 3-D Structures,’’ Int. J. Solids Struct.,32, pp. 1645–1658.

@27# Weichert, D., Hachemi, A., and Schwabe, F., 1999, ‘‘Application of Sha
down Analysis to the Plastic Design of Composites,’’ Arch. Appl. Mech.,69,
pp. 623–633.

@28# Hamilton, R., Boyle, J. T., Shi, J., and Mackenzie, D., 1996, ‘‘A Simple Upp
Bound Method for Calculating Approximate Shakedown Loads,’’ ASME
Pressure Vessel Technol.,120, pp. 195–199.

@29# Ponter, A. R. S., and Carter, K. F., 1997, ‘‘Shakedown State Simulation Te
niques Based on Linear Elastic Solutions,’’ Comput. Methods Appl. Me
Eng.,140, pp. 259–279.

@30# Drucker, D. C., 1963, ‘‘On the Macroscopic Theory of Inelastic Stress-Stra
Time-Temperature Behavior,’’Advances in Materials Research in the NAT
Nations~AGAR Dograph 62!, Pergamon Press, New York, pp. 193–221.

@31# Dang Van, K., and Papadopoulos, I. V., 1999,High-Cycle Metal Fatigue From
Theory to Applications, CISM, Springer-Verlag, New York.

@32# Ponter, A. R. S., and Leckie, F. A., 1998, ‘‘Bounding Properties of Met
Transactions of the ASME



a
a

w

u
e
t

t

-

,

l

e
,

s

f

y

in
a

ory
st.,

ed

age
at.

of

to
J.

g of

s
ut.

et
Sci.

ates

’’

‘‘A
ake-
ch.

lly
pl.

ted

wn

y-

nt

ing
ruct.

mi-

gth
Matrix Composites Subjected to Cyclic Loading,’’ J. Mech. Phys. Solids,46,
pp. 697–717.

@33# Silberschmidt, V. V., Rammerstorfer, F. G., Werner, E. A., Fischer, F. D.,
Uggowitzer, P. J., 1999, ‘‘On Material Immanent Ratchetting of Two-Ph
Materials Under Cyclic Purely Thermal Loading,’’ Arch. Appl. Mech.,69, pp.
727–750.

@34# Lewis R. W., and Schrefler B. A., 1998,The Finite Element Method in the
Static and Dynamic Deformation and Consolidation of Porous Media, John
Wiley and Sons, Chichester.

@35# Cocchetti, G., and Maier, G., 1998, ‘‘Static Shakedown Theorems in Piece
Linearized Poroplasticity,’’ Arch. Appl. Mech.,68, pp. 651–661.

@36# Cocchetti, G., and Maier, G., 2000, ‘‘Shakedown Analysis in Poroplasticity
Linear Programming,’’ Int. J. Numer. Methods Eng.,47, No. 1–3, pp. 141–
168.

@37# Cocchetti, G., and Maier, G., 2000, ‘‘Upper Bounds on Post-Shakedown Q
tities in Poroplasticity,’’Inelastic Analysis of Structures Under Variable R
peated Loads, D. Weichert and G. Maier, eds., Kluwer, Dordrecht, The Ne
erlands, pp. 289–314.

@38# Maier, G., 1969, ‘‘Shakedown Theory in Perfect Elastoplasticity With Asso
ated and Nonassociated Flow-Laws: A Finite Element, Linear Programm
Approach,’’ Meccanica,4, pp. 250–260.

@39# Maier, G., 1970, ‘‘A Matrix Structural Theory of Piecewise-Linear Plastici
With Interacting Yield Planes,’’ Meccanica,5, pp. 55–66.

@40# Tin-Loi, F., 1990, ‘‘A Yield Surface Linearization Procedure in Limit Analy
sis,’’ Mech. Struct. Mach.,18, pp. 135–149.

@41# Comi, C., and Corigliano, A., 1991, ‘‘Dynamic Shakedown in Elastoplas
Structures With General Internal Variable Constitutive Laws,’’ Int. J. Plast.7,
pp. 679–692.

@42# Corigliano, A., Maier, G., and Pycko, S., 1995, ‘‘Dynamic Shakedown Ana
sis and Bounds for Elastoplastic Structures With Nonassociative, Internal V
able Constitutive Laws,’’ Int. J. Solids Struct.,32, pp. 3145–3166.

@43# Du, S. T., Xu, B. Y., and Dong, Y. F., 1993, ‘‘Dynamic Shakedown Theory
Elastoplastic Work-Hardening Structures Allowing for Second-Order Geom
ric Effects,’’ Acta Mech. Solidica Sinica,6, pp. 15–26.

@44# Polizzotto, C., 1984, ‘‘On Shakedown of Structures Under Dynamic Ag
cies,’’ Inelastic Analysis Under Variable Loads, A. Sawczuk and C. Polizzotto
eds., Cogras, Palermo, pp. 5–29.

@45# Polizzotto, C., Borino, G., Caddemi, S., and Fuschi, P., 1993, ‘‘Theorem
Restricted Dynamic Shakedown,’’ Int. J. Mech. Sci.,35, pp. 787–801.

@46# Ceradini, G., 1969, ‘‘Sull’adattamento dei corpi elastoplastici soggetti
azioni dinamiche,’’ Gior. Genio Civile,415, pp. 239–258.

@47# Corradi, L., and Maier, G., 1973, ‘‘Inadaptation Theorems in the Dynamics
Elastic-Work Hardening Structures,’’ Ing. Arch.,43, pp. 44–57.

@48# Corradi, L., and Maier, G., 1974, ‘‘Dynamic Non-Shakedown Theorem
Elastic Perfectly-Plastic Continua,’’ J. Mech. Phys. Solids,22, pp. 401–413.

@49# Corigliano, A., Maier, G., and Pycko, S., 1995, ‘‘Kinematic Criteria of D
namic Shakedown Extended to Nonassociative Constitutive Laws With S
ration Hardening,’’ Rend. Acc. Naz. Lincei. Sci., Ser. IX,VI , pp. 55–64.

@50# Pham, D. C., 1996, ‘‘Dynamic Shakedown and a Reduced Kinematic Th
rem,’’ Int. J. Plast.,12, pp. 1055–1068.

@51# Maier, G., and Comi, C., 1997, ‘‘Variational Finite Element Modelling
Poroplasticity,’’Recent Developments in Computational and Applied Mech
ics, B. D. Reddy, ed., CIMNE, Barcelona, pp. 180–199.
Warner T. Koiter

Conferral at the
2000 International Mechanical E

6

a
n

,
c
a
i
c

Journal of Applied Mechanics
nd
se

ise

by

an-
-
h-

ci-
ing

y

tic

y-
ari-

of
et-

n-

of

ad

of

or

-
atu-

eo-

n-

@52# Maier, G., and Novati, G., 1990, ‘‘Dynamic Shakedown and Bounding The
for a Class of Nonlinear Hardening Discrete Structural Models,’’ Int. J. Pla
6, pp. 551–572.

@53# Druyanov, B., and Roman, I., 1999, ‘‘Conditions for Shakedown of Damag
Elastic Plastic bodies,’’ Eur. J. Mech. A/Solids,18, pp. 641–651.

@54# Dvorak, G. J., Lagoudas, D. C., and Huang, C. M., 1994, ‘‘Fatigue Dam
and Shakedown in Metal Matrix Composite Laminates,’’ Mech. Compos. M
Struct.,1, pp. 171–202.

@55# Feng, X. Q., and Yu, S. W., 1995, ‘‘Damage and Shakedown Analysis
Structures With Strain-Hardening,’’ Int. J. Plast.,11, pp. 237–249.

@56# Hachemi, A., and Weichert, D., 1997, ‘‘Application of Shakedown Theory
Damaging Inelastic Material Under Mechanical and Thermal Loads,’’ Int.
Mech. Sci.,39, pp. 1067–1076.

@57# Huang, Y., and Stein, E., 1996, ‘‘Shakedown of a Cracked Body Consistin
Kinematic Hardening Material,’’ Eng. Fract. Mech.,54, pp. 107–112.

@58# Yan, A. M., and Nguyen, D. H., 1999, ‘‘Limit Analysis of Cracked Structure
by Mathematical Programming and Finite Element Technique,’’ Comp
Mech.,24, pp. 319–333.

@59# Nayroles, B., and Weichert, D., 1993, ‘‘La notion de sanctuaire d’elasticite
d’adaptation des structures,’’ C. R. Acad. Sci., Ser. II: Mec., Phys., Chim.,
Terre Univers,316, pp. 1493–1498.

@60# Christiansen, E., and Andersen, K. D., 1999, ‘‘Computation of Collapse St
With von Mises Type Yield Condition,’’ Int. J. Numer. Methods Eng.,46, pp.
1185–1202.

@61# Tin-Loi, F., 1989, ‘‘A Constraint Selection Technique in Limit Analysis,
Appl. Math. Model.,13, pp. 442–446.

@62# Borges, L. A., Feijo´o, R. A., and Zouain, N., 1999, ‘‘A Directional Error
Estimator for Adaptive Limit Analysis,’’ Mech. Res. Commun.,26, pp. 555–
563.

@63# Franco, J. R. Q., Oden, J. T., Ponter, A. R. S., and Barros, F. B., 1997,
Posteriori Error Estimator and Adaptive Procedures for Computation of Sh
down and Limit Loads on Pressure Vessels,’’ Comput. Methods Appl. Me
Eng.,150, pp. 155–171.

@64# Cocks, A. C. F., and Leckie, F. A., 1988, ‘‘Deformation Bounds for Cyclica
Loaded Shell Structures Operating Under Creep Condition,’’ ASME J. Ap
Mech.,55, pp. 509–516.

@65# Polizzotto, C., 1982, ‘‘A Unified Treatment of Shakedown Theory and Rela
Bounding Techniques,’’ Solid. Mech. Arch.,7, pp. 19–75.

@66# Genna, F., 1991, ‘‘Bilateral Bounds for Structures Under Dynamic Shakedo
Conditions,’’ Meccanica,26, pp. 37–46.

@67# Capurso, M., 1979, ‘‘Some Upper Bound Principles for Plastic Strains in D
namic Shakedown of Elastoplastic Structures,’’ J. Struct. Mech.,7, pp. 1–20.

@68# Corradi, L., 1976, ‘‘Mathematical Programming Methods for Displaceme
Bounds in Elastoplastic Dynamics,’’ Nucl. Eng. Des.,37, pp. 161–177.

@69# Maier, G., 1973, ‘‘Upper Bounds on Deformations of Elastic-Workharden
Structures in the Presence of Dynamic and Second-Order Effects,’’ J. St
Mech.,2, pp. 265–280.

@70# Ponter, A. R. S., 1975, ‘‘General Displacement and Work Bounds for Dyna
cally Loaded Bodies,’’ J. Mech. Phys. Solids,23, pp. 151–163.

@71# Taliercio, A., 1992, ‘‘Lower and Upper Bounds to the Macroscopic Stren
Domain of a Fiber-Reinforced Composite Material,’’ Int. J. Plast.,8, pp. 741–
762.
Medal Recipient

Koiter Lecture,
ngineering Congress and Exposition

er-

te at
THE WARNER T. KOITER MEDAL was established in 199
to recognize distinguished contributions to the field of solid m
chanics with emphasis on the effective blending of theoretical
applied elements, and on a high degree of leadership in the i
national solid mechanics community.

The medal honors the late Dr. Warner T. Koiter~1914–1997!,
world renowned authority in the field of solid mechanics, and
commemorates his vast contributions as research engineer
teacher.

GIULIO MAIER, professor, Technical University of Milan
Italy, for fundamental research in solid and structural mechani
for pioneering analytical and computational work on structur
and theoretical plasticity, computational mechanics, mathemat
programming methods, structural optimization, and the appli
tion of this research to engineering; and for his outstanding lea
ership in the applied mechanics community.
e-
nd
ter-

it
and

s;
l

cal
a-
d-

Dr. Maier is an outstanding
researcher, a leader in the ap-
plied mechanics community and
a key link between European
and U.S. applied mechanicians.

Since 1961, Maier has been at
the Technical University~Po-
litecnico! of Milan, Italy, where
in 1970 he assumed the position
of professor of structural me-
chanics and engineering~Sci-
enza delle Costruzioni!. He
served as department head, co-
ordinator of continuing educa-
tion and coordinator of the doctoral school in structural engine
ing.

Previous academic appointments include research associa

Giulio Maier
SEPTEMBER 2001, Vol. 68 Õ 807



,

e

e
o
h

i
h
o

i

e

ial

e
a-
y
y
f

; a
nics
u-

lish
the

uth

i-

his
t
c-

2,
Brown University ~Providence, R.I.! and Cambridge University
England, in 1964 and 1967, respectively; and visiting professo
civil engineering at the University of Illinois at Urbana
Champaign and the University of Minnesota, Minneapolis,
1970 and 1997, respectively.

Maier’s research contributions include: various extremum th
rems in plasticity; effects of constitutive instability~softening,
nonassociativity! on structural responses to loads; criteria f
overall stability, bifurcation, algorithmic stability in dynamics
shakedown theorems and upper bounds in dynamics, poropla
ity and with geometric effects; mathematical programming me
ods for structural analysis and optimum design; parameter ide
fication methods in materials and structural mechanics; symm
Galerkin boundary element methods; and various practical pr
dures for analysis and design of tension structures and offs
structures and pipelines.

As a consultant, Maier, with his co-workers, contributed to s
nificant projects, such as the Trans-Mediterranean Pipeline, w
he solved structural problems in deep water laying operati
across the Sicily Channel between Tunisia and Italy; the sub
tunnels crossing the Messina Straits, where he conducted ex
sive damage simulations; and safety studies of off-shore pipel
and nuclear power plant components.

Maier is the author/co-author of 230 publications. He has b
associate editor of theEuropean Journal of Mechanics/Solidsand
808 Õ Vol. 68, SEPTEMBER 2001
r of
-
in

o-

or
;
stic-
th-
nti-
tric
ce-
ore

g-
ere
ns

sea
plo-
nes

en

editor of Meccanica, and is at present a member of the editor
boards of 15 scientific journals.

A member of ASME, Maier is a Fellow and Life Member of th
American Society of Civil Engineers; a Fellow of the Italian N
tional Academy~Lincei! in Rome, the Italian National Academ
of Sciences~dei XL! in Rome and the Academy of Lombard
~Instituto Lombardo! in Milan; a member and former president o
the Italian Association of Theoretical and Applied Mechanics
member and former council member of the European Mecha
Society; and a Fellow of the International Association of Comp
tational Mechanics. He is also a foreign member of the Po
Academy of Sciences, the Hungarian Academy of Sciences,
Russian Academy of Engineering, the Royal Society of So
Africa and the New York Academy of Sciences.

Among his other honors is the University Medal from the Un
versity of Colorado, Boulder~1998!; the Copernicus Medal from
the Polish Academy of Sciences, Warsaw~1984!; and the Fel-
trinelli Prize from the Italian National Academy~1981!.

Maier received his master’s degree~laurea! in mechanical en-
gineering at the University of Trieste, Italy, in 1955. He earned
‘‘specializzazione’’~doctoral degree! in aerospace engineering a
the University of Rome, Italy, in 1958. He received honorary do
torates from the Aristotle University~Thessaloniki, Greece! and
the Faculte´ Polytechnique de Mons, Belgium, in 1985 and 199
respectively. He is a chartered civil engineer in Milan, Italy.
Transactions of the ASME



cs but
xceed
line
to

uld be
s
, New

s who
m the
Journal of
Applied

Mechanics Brief Notes
A Brief Note is a short paper that presents a specific solution of technical interest in mechani
which does not necessarily contain new general methods or results. A Brief Note should not e
1500 wordsor equivalent~a typical one-column figure or table is equivalent to 250 words; a one
equation to 30 words!. Brief Notes will be subject to the usual review procedures prior
publication. After approval such Notes will be published as soon as possible. The Notes sho
submitted to the Editor of the JOURNAL OF APPLIED MECHANICS. Discussions on the Brief Note
should be addressed to the Editorial Department, ASME International, Three Park Avenue
York, NY 10016-5990, or to the Editor of the JOURNAL OF APPLIED MECHANICS. Discussions on
Brief Notes appearing in this issue will be accepted until two months after publication. Reader
need more time to prepare a Discussion should request an extension of the deadline fro
Editorial Department.
e

h
t

n

p
fi

t
mo-

ed
erse

b-
int
is
llel

of

ted,

2

On the Existence of a Solution for a
Solid Circular Plate Bilaterally
Supported Along Two Antipodal
Boundary Arcs and Loaded by a
Central Transverse Concentrated Force

G. Monegato
Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy

A. Strozzi
Faculty of Engineering, Modena and Reggio Emilia
University, Via Vignolese 905, 41100 Modena, Italy

A purely flexural mechanical analysis is presented for a th
solid, circular plate, deflected by a central transverse conc
trated force, and bilaterally supported along two antipodal p
riphery arcs, the remaining part of the boundary being free. T
problem is modeled in terms of a singular integral equation of
Prandtl type, which possesses a unique solution expresse
terms of a reaction force containing a factor exhibiting squa
root endpoint singularities. This solution is then shown not
respect the requested boundary constraints. It is therefore c
cluded that, within the framework of the purely flexural pla
theory, the title problem cannot admit the weighted L2 solution
here examined. It cannot, however, be excluded that a solutio
the title problem exists, which possesses stronger endpoint si
larities than those examined in this paper, or is of a more gene
form than the one considered here.@DOI: 10.1115/1.1379037#

1 Introduction
Circular plates axisymmetrically loaded but constrained nona

symmetrically have repeatedly attracted the attention of the
searchers. The analytical-numerical papers addressing such
lems may be classified in two main categories, where the
group comprises analytical solutions based upon an integral

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept.
1999; final revision, Dec. 18, 2000. Associate Editor: R. C. Benson.
Copyright © 2Journal of Applied Mechanics
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resentation, for example, Sherman@1#, whereas the second se
encompasses studies of differential fashion, for instance, Sa
durov and Tikhomirov@2#.

In this paper a thin, solid circular plate, bilaterally support
along two antipodal periphery arcs and deflected by a transv
central force is considered~see Fig. 1!. Within the framework of
the purely flexural plate theory, it is demonstrated that this pro
lem admits no solution exhibiting certain types of endpo
algebraic/logarithmic singularities, a results which justifies th
return to a classical problem. This negative conclusion is para
to that obtained by Grigolyuk and Tolkachev@3#, p. 381, with
regard to an infinite plate resting on a line support.

2 Formulation of the Integral Equation for the Plate
Within the framework of the classical, purely flexural theory

elasticity for plates, the expression for the edge deflectionw(u) in
a thin, solid, circular plate loaded by a transverse, concentra
central forceP, and by two antipodal border forcesP/2 equilibrat-
ing the central load is@4#

w~u!
48pD~31n!~12n2!

Pro
2

548~11n!F lnu2 sinuu2cosu lnUtan
u

2UG
112~11n!2@p~u2sinu!2u2#22p2~11n!213~12n!3

0<u<p (2.1)

9,

Fig. 1 A thin, solid, circular plate, bilaterally supported along
two antipodal periphery arcs and deflected by a transverse
central force
001 by ASME SEPTEMBER 2001, Vol. 68 Õ 809
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whereP represents the intensity of the central load,D denotes the
flexural rigidity of the plate,n indicates the Poisson’s ratio,r o the
plate outer radius, andu the angular coordinate, whose origi
coincides with the point of application of one of the two bounda
loads ~Fig. 2!. The boundary deflectionw(u) is expressed with
respect to the plate center. In the following, Eq.~2.1! is symbol-
ized as

w~u!5PK~u!. (2.2)

In a solid circular plate of radiusr o , loaded by the same dis
tributed forceF applied along two antipodal boundary arcs
angular width 2a and by an equilibrating central forceP, the
integral representation of the deflection of the loaded plate bo
with respect to the plate center is

w~u!52E
2a

1a

K~ uu2vu!F~v!r odv (2.3)

where the presence of number 2 in Eq.~2.3! derives from the
observation that a unity periphery load is connected to a cen
force of intensity 2~see Fig. 2!. The origin of angleu coincides
with the center of one of the loaded arcs, while anglev is an
integration device whose origin coincides with that ofu.

When a circular plate is considered which is loaded by a cen
transverse forceP and is bilaterally sustained along two antipod
edge arcs of angular width 2a, the supported arcs exhibit a con
stant deflection with respect to the plate center, since the sup
is assumed to be rigid in comparison to the plate flexibility. T
integral equation describing the title problem may thus be
tained by equalling to a constant the integral expression~2.3! of
the plate deflection. It is also noted that, since the plate suppo
arcs must remain flat after deflection, the derivatives with resp
to u of the plate deflectionw along the supported arc must vanis
In particular, a remarkably simple integral equation is achieved
annulling the sum of the first and third derivatives

dw~u!

du
1

d3w~u!

du3 50⇒E
2a

1aS ]K

]u
1

]3K

]u3 DF~v!dv50.

(2.4)

By exploiting the symmetry of the reaction forceF and the
condition~2.5!, after lengthy passages the integral Eq.~2.4! takes
the particularly compact Prandtl-type form

Fig. 2 The deflection w „u… in a circular plate loaded by a
transverse, concentrated, central force P, and by two antipodal
border forces PÕ2
810 Õ Vol. 68, SEPTEMBER 2001
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E
2a

1a 1

tan~u2v!
F~v!dv1

~11n!p

2 E
2a

u

F~v!dv

5
~11n!

4r o
PS u1

p

2 D (2.5)

which is a Fredholm integral equation of the first kind wi
Hilbert-type kernel,~Mikhlin @5#!.

The integral Eq.~2.5! has to be coupled with an additiona
condition, expressing the fact that each plate support sustains
the central loadP whose intensity is considered as known,

E
2a

1a

F~v!r odv5
P

2
. (2.6)

Concerning the derivatives ofw with respect tou employed in
~2.5!, it is noted that the integral representation of the first deri
tive of w(u) is well defined when, for example,FPL1(2a,a),
or even whenF is a Dirac delta functiond(v –v0). The corre-
sponding formal representation of the third derivative still hold
although the derivative itself must be interpreted in a proper w
sense, whenFPL1(2a,a). This derivative is also defined whe
F(v)5d(v6a), since in this case it belongs to a weightedL1

space. Therefore, whenF(v) is a L1 function, eventually plus a
linear combination ofd(v6a), nothing is lost by considering the
Eq. ~2.5!.

It is observed that a reaction force which solves the title pr
lem is also a solution to the new Eq.~2.5!. On the other side, Eq
~2.5! models a problem which is more general than that expres
in the title, since the first of Eqs.~2.4! implies thatw be of the
form

w~u!5C11C2 cosu (2.7)

where, due to the problem symmetry, only the deflection ter
which are symmetrical with respect tou have been considered i
~2.7!. Equation~2.7! shows that a solution to the integral Eq.~2.5!
coupled with condition~2.6! produces a plate deflection which
the sum of a constant and of a cosinusoidal term. A cons
deflection is consistent with the problem expressed in the t
since rigid supports would produce constant deflections of
supported border arcs with respect to the plate center wherea
cosinusoidal term is undesired. The two constantsC1 andC2 are
not generic, since they depend upon the angular width 2a of the
supports and upon the selectedF(v). The expressions for con
stantsC1 andC2 can be derived from~2.3! and ~2.7!,

C252
d2w~u!

du2 U
u50

; C15w~u!uu502C2 , (2.8)

where w(u) in ~2.8! depends on the selectedF(v). Since the
cosinusoidal deflection is not consistent with the modeling of
title problem, it is explored in the following section whether co
stantC2 vanishes.

3 Evaluation of the Reaction Force Distribution and of
the Plate Deflections for the Solution of the Integral Eq.
„2.5…

As suggested by the form of the analytical solution to the in
gral Eq. ~2.5! for vanishing Volterra term~Ling @6#, p. 306!, a
solution to the complete Eq.~2.5! is expressed in the form~Glad-
well @7#!

F~v!5

cosvuS sinv

sina D
Asin2 a2sin2 v

(3.1)

with u(x) even. This is a standard procedure when solving sin
lar integral equations. Setting
Transactions of the ASME
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x5
sinv

sina
, t5

sinu

sina
(3.2)

where in the following it is assumed that 0,a,p/2, Eq. ~2.5!
becomes

A12t2 sin2 a

sina

1

p E
21

11 1

A12x2

u~x!

~ t2x!
dx1

~11n!

2 E
21

t u~x!

A12x2
dx

5 f ~ t ! (3.3)

where

f ~ t !5
~11n!

4pr o
PFa sin~ t sina!1

p

2 G (3.4)

whereas condition~2.6! assumes the new form

E
21

11 u~x!

A12x2
dx5

P

2r o
. (3.5)

It may be proved that the Prandtl integral Eq.~3.3! coupled
with condition ~3.5! possesses a unique solution for the who
physical range ofn, with u(x) respecting the condition

E
21

1 uu~x!u2

A12x2
dx,`, (3.6)

that is, withF(v) belonging to the weightedL2 space defined by
the inequality

E
2a

1a

Asin2 a2sin2 vuF~v!u2dv,`. (3.7)

This proof is omitted for brevity, where details may be found
Monegato and Strozzi@8#.

The reaction forceF(v) expressed by~3.1! which solves the
integral Eq.~3.3! is numerically determined to the requested a
curacy. It is then shown that this reaction force produces a n
vanishing constantC2 for all angular widths 2a of the supports,
0,2a,p. Approximatingu(x) by uN(x)

uN~x!5
P

2pr o
1(

i 51

N

c2iT2i~x! (3.8)

where Tn are the classical Chebyshev polynomials of the fi
kind, all integrations in~3.3! may be exactly expressed in terms
the Chebyshev polynomials of the second kind. Consequently,

Fig. 3 Coefficient C2 normalized over K , versus 2 aÕp, for
nÄ0.3
Journal of Applied Mechanics
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~3.3! has been numerically solved with the collocation method,
adopting theN positive zeroes of the Chebyshev polynomials
the second kind of degree 2N. It can be shown that this colloca
tion method is convergent in the considered weightedL2 space for
variableF(v), which in turn means that thekth derivative, with
k50,1,2, of the approximant ofw(u) is uniformly convergent to
the corresponding derivative ofw(u). This justifies the numerica
approach employed to determine constantsC1 andC2 , hence to
prove the nonexistence results. The omitted details may be fo
in Monegato and Strozzi@8#. The choiceN54 in ~3.8! appears to
be sufficient to guarantee three to four significant digits.

The numerically determined reaction forceF(v) remains rea-
sonably constant along the supported arcs, apart from the infi
peaks at the support extremities. Unfortunately, for 0,2a,p the
plate supported edge arcs, when deflected by the above rea
force distribution, do not remain flat, as it would be requested
the title problem. In fact, constantC2 of Eq. ~2.7!, when computed
from ~2.8! by employing the unique reaction forceF(v) which
solves Eq.~2.5!, does not vanish, but it remains positive and d
creasing witha for 0,2a,p. Consequently,w(u) does not stay
constant for 0<u<a, but it decreases withu. Figure 3 displays the
value of coefficientC2 normalized overK5Pro

2/(2pD), versus
2a/p, for n50.3. Fora→0, coefficientC2→` as loga, ~Strozzi
et al. @9#!, whereasC2 vanishes only for 2a5p. As a conse-
quence, for 0,2a,p the plate supported edge arcs, when d
flected by the reaction force, exhibit a cosinusoidal profile.

The above numerical results prove that reaction force distri
tions do exist which cause a cosinusoidal deflection of the p
loaded edge arcs. Conversely, such results demonstrate th
reaction force profileF(v) of form ~3.1! and belonging to the
weightedL2 space defined by~3.7! exists which keeps the plat
supported edge arcs flat, for any angular width of the supp
comprised in the interval 0,2a,p. Forms of the unknown func-
tion F(v) belonging to the weightedL2 space defined by~3.7!
include, for example, functions possessing an endpoint singula
bounded byC(12x2)b, whereb.23/4, and where variablex is
defined by~3.2!. Consequently, reaction forces with the abo
singularities do not constitute a solution to the title problem. F
instance, a reaction force distributionF(v) exhibiting the classi-
cal square root singularities at the contact extremities,b521/2
.23/4, encountered when a rigid rectangular punch indent
deformable half-space; Gladwell@7#, cannot solve this plate prob
lem. Similarly, algebraic/logarithmic singularities of type, sa
(12x2)21/2 log(12x2) are unacceptable. This negative result
corroborated by an analogous conclusion reached by Grigo
and Tolkachev~@3#, p. 381! with regard to an infinite plate resting
on a line support. On the other side, functionsF(v) possessing
stronger singularities,b<23/4, do not verify condition~3.7! and,
consequently, are not considered in this study. It cannot there
be excluded that a solution to the title problem might exist wh
exhibits such endpoint singularities. It cannot equally be exclu
a priori that a solutionF(v) of the equationw5C derived from
~2.3! exists, which is of a more general form than the one cons
ered here. For instance, Grigolyuk and Tolkachev~@3#, p. 381!
propose that the distributed reaction be formed by a distribu
force superposed to a distributed couple. Notice also that for
case 2a5p, for which the plate is axisymmetrically supported,
solution to the title problem does exist, which consists of a c
stant reaction force. The same conclusions hold for any axis
metric, non-self-equilibrated loading, for instance for a plate s
ply supported along two antipodal arcs and deflected by a unif
transverse pressure.

It is finally shown that the reaction force can neither be con
tuted by a distributed force and by two concentrated loads at
support extremities. In other words, the reaction force canno
of the formF0(v)1C@d(v2a)1d(v1a)#, whereF0 is of type
~3.1!, d is the Dirac delta function, and where the presence
constantC aims at annulling constantC2 in ~2.7!. Indeed, such a
function cannot satisfy Eq.~2.5! since
SEPTEMBER 2001, Vol. 68 Õ 811
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E
2a

1a d~v6a!

tan~u2v!
dv5

1

tan~u6a!
, 2a,u,1a (3.9)

while all other terms in~2.5! give rise to smoother functions a
v56a.

4 Conclusions
A purely flexural mechanical analysis has been carried out f

thin, solid, circular plate, deflected by a central transverse con
trated force, and bilaterally supported along two antipodal per
ery arcs. This problem has been described in terms of a sing
integral equation of the Prandtl type, which admits a uniq
weightedL2 solution. It has been shown that this solution does
fulfill the requested boundary constraints. It is therefore conclu
that the title problem does not admit any reaction force among
weighted L2 functions here considered. It cannot, however,
excluded that a solution to the title problem exists, which p
sesses stronger endpoint singularities than those examined in
study, or is of a more general form than the one here conside
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A Note on Wavelet-Based Method for
Damage Detection

L. Zhang

S. T. Quek

Q. Wang
Mem. ASME

Department of Civil Engineering, National University of
Singapore, Singapore 117576

The applicability of Gabor wavelet transform of time history da
in detecting a thin damage in beam is examined. For the c
where the damage position is completely unknown, the use of
load positions is suggested. Cases considered are the positio
the sensors relative to the damage and load positions, the he
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of the damage, the severity of the damage, and the effect of bo
ary conditions. The results show that the method is suitable
detecting localized damage and relatively robust in terms of s
sor position, damage height, and degree of damage.
@DOI: 10.1115/1.1379038#

1 Introduction
The wavelet-based approach for structural health monitor

and damage detection has been recently pursued by man
searchers~e.g.@1–3#!. This note summarizes the application of th
wavelet technique to detect localized damage based on simu
dynamic response data from finite element analysis. Based
localized perturbations detected using Gabor wavelet coefficie
the damage position can be estimated without any prior kno
edge. The results for the effect of sensor position, damage he
and severity of damage are discussed. The difference in result
simply supported and fixed ended boundary conditions are
presented.

2 Damage Detection Using Wavelet Analysis
For the free vibration of a flexural Euler beam, the phase sp

c is related to the group speedcg corresponding to the first mod
wave by~@4#!

cg[
dv

dk
52AvF EI

rAG1/4

52c (1)

indicating the dispersive nature of the wave. For a fixed freque
component and geometric property, the speed is a function
material property, such asE. For damage detection, if the signa
are filtered and analyzed at a specific high frequency, it is reas
able to assume a constant wave velocity for a given medium.

Consider the case of a simply supported beam shown in Fi
where an impact forceF is initiated at timet50. With a sensor at
positionA ~distancexA in Fig. 1!, the damage locationxd from the
impact position can be derived based on simple wave propaga
considerations as

8,

Fig. 1 Simply supported beam with thin damage

Table 1 Computed damage position based on data from vari-
ous sensor positions
© 2001 by ASME Transactions of the ASME



Table 2 Detecting damage using signals from two loads „four possible damage positions …*

Journal of Applie
Fig. 2 Distribution of Gabor wavelet coefficients at scale 13 for different de-
gree of damage for sensor position A
a

r
s
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sor
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ples

ied
aly-
xd5
xA

2tA1
~ tA11tA2! (2)

where tA1 and tA2 denote the time the direct and reflected wa
reaches sensorA. For the case where the damage is of signific
width, two additional times based on wave reflections are nee
in order to estimate the width of the damage zone. Similar eq
tions can be written to locate the damage location if the senso
at either positionB or C.

To obtain the arrival times of a wave at an appropriate f
quency, Gabor wavelets~@3#! are used to transform the respon
d Mechanics
ve
nt
ded
ua-
r is

e-
e

time history captured by the sensor. Since higher frequency wa
are more suitable for damage detection using wave propaga
analysis, the distributions of the wavelet coefficients at high sca
are considered. The appropriate scale is chosen which has
equate peaks to signify the arrival times of waves at the sen
position. Based on experience, the first three to five peaks
reasonable results, corresponding to scale 13 for the exam
presented in this note.

A fixed ended beam with a crack was numerically stud
where the response data was computed from finite element an
sis. The pertinent data of the beam are: widthB520 mm, thick-
SEPTEMBER 2001, Vol. 68 Õ 813
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A Novel Technique in the Solution of
Axisymmetric Large Deflection
Analysis of a Circular Plate

L. S. Ramachandra1 and D. Roy
Department of Civil Engineering, Indian Institute of
Technology, Kharagpur 721 302, India

In the present paper a new linearization technique referred to as
the locally transversal linearization (LTL) is used for large deflec-
tion analyses of axisymmetric circular plates. The LTL procedure,
where solution manifolds of linearized equations are made to in-
tersect transversally those of the nonlinear ordinary differential
equations, reduces the given set of nonlinear ordinary differential
equations to a set of nonlinear algebraic equations in terms of a
descretized set of unknown response vectors.
@DOI: 10.1115/1.1379039#

1 Introduction
It is usually not possible to replace the nonlinear governing

differential equations in terms of some linearized equations even
over small step sizes, as the tangent spaces of the nonlinear dif-
ferential equations are space dependent. A way out of this problem
is, however, found in the proposed locally transversal linearization
~LTL ! method, wherein solution manifolds of the linearized equa-
tions are made to intersect transversally those of the given non-
linear equations at a set of pre-selected points along the indepen-
dent axis where the solution vectors need to be determined. The
method, thus, attempts to satisfy exactly the governing nonlinear
ordinary differential equations at these pre-selected points. The
LTL-based solution may not follow the actual path in between any
two such successive points of intersections. The method finally
reduces the given non-linear ordinary differential equations to a
collection of coupled sets of nonlinear algebraic equations in
terms of the unknown solution vectors at each of the chosen
points. In present study, a boundary value problem is treated as a
constrained initial value problem, where one of the boundaries
~say, the left boundary! of the domain is treated as the initial point
to start integrating the ordinary differential equations; however, all
the state variables at the left boundary are not known a priori. To
start with, only a few of these conditions are known at the left
boundary while the rest are specified at the right boundary of the
domain. In this study, the unknown initial conditions at the left
boundary are treated as unknown variables to be determined such
that the resulting solution satisfies prescribed boundary conditions
at the right boundary. The method is adequately described else-
where~@1#! and, hence, not reproduced here. The large deflection
axisymmetric analysis of circular plate is carried out using the
proposed LTL technique. Comparisons are made with the power
series solutions and other approximate solutions and in the pro-
cess, high numerical accuracy of the proposed method is readily
brought out.

2 Numerical Examples
The equations relevant to the axisymmetric large deflection

analysis of circular plate may be written in terms of in-plane~u!

t.in.

1,
nessH510 mm, lengthL52 m, modulusE5206 GPa, and ac-
tual damage location is 0.5 m. The results are shown in Tab
indicating that the approach yields good results for the three
sor positions.

In practice, often no prior knowledge of the approximate po
tion of the damage relative to the sensor and loading position
available. In this case, either additional time values caused by
wave reflections from the damage are used or a second loadFB is
considered. The former is not preferred due to complications a
ing from multiple wave reflections. UsingFB and based on simple
wave propagation, it is shown in Table 2 that the location of
damage can be estimated, where the average velocity of w
propagation can be computed as

Vh15
d11d2

t1
A 5

d2

t1
B . (3)

Once the relative position of the damage is known, the dista
between the damage and load can be computed as describe
lier. The same procedure can be easily extended to locate
loading position if the latter is not known.

Numerical simulations were performed to study the effect
damage heightc on detectability. Results forc/H50.4, 0.6, 0.8,
and 1.0 indicate that the damage locations can be estimate
within a one percent error.

The damage above was simulated by setting the Young’s mo
lus of the damage zone to one-tenth that of the undamaged b
The wavelet coefficients at scale 13 are presented in Fig. 2
the damage zone having Young’s moduli of one-tenth, one-fi
half, and eight-tenths of the undamaged beam. As the severi
damage increases, the lower peak in the wavelet coefficient c
corresponding to the damage becomes more significant. The c
puted positions for the four cases are not significantly differe
ranging from 0.505 m for the one-tenth case to 0.500 m for
eight-tenth case.

The detectability is compared between simply supported~SS!
and fixed ended~FF! boundary conditions. The SS case yields
4.2 percent error in the computed damage position compare
0.2 percent for the FF case. The probable reason is due to
vertical boundaries at the end where, for the FF case, it is
formly constrained. For the SS case, only the lower corne
constrained and the other nodes are free. Hence, the refle
wave in the latter case is a composite wave but computation
the averaged wave speed is used.

3 Concluding Remarks
The applicability of the wavelet transform to damage detect

has been examined where the Gabor wavelet is used to an
the time history data caused by thin damage. For the case w
the damage position is completely unknown, the use of two l
positions is suggested. The results of the sensitivity of the met
in terms of the height of damage, severity of the damage
boundary conditions indicate the promise of this approach.
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where, ‘‘h’’ is the thickness,n the Poisson’s ratio,D the flexural
rigidity, ‘‘ q’’ intensity of lateral load, and ‘‘a’’ the radius of the
plate. The associated boundary conditions are

u~r 50!50

and

dw

dr
~r 50!50

u~r 5a!50; w~r 5a!50;

and

dw

dr
~r 5a!50 for clamped (3)

u~r 5a!50; w~r 5a!50;

and

Mr~r 5a!50 for simply supported

To solve the above boundary value problem, the following L
equations over theith subdomainDi and with initial conditions
$ūi 21

( i 21) , dūi 21
( i 21)/dr5ui 218( i 21) , w̄i 21

( i 21) , dw̄i 21
( i 21)/dr5w̄i 218( i 21) ,

d2w̄i 21
( i 21)/dr25w̄i 219( i 21)% are employed~superscripts stand for th

segment number and subscripts denote the node number!.

d2ū~ i !

dr2 5b i (4)

d3w̄~ i !

dr3 5g i (5)

A complete solution of Eqs.~4! and~5! may be easily written and
the arbitrary constants of integration are evaluated via initial c
ditions:

ūi 215ui 21 ; ūi 218 5ui 218 ; w̄i 215wi 21 ; w̄i 218 5wi 218

and

w̄i 219 5wi 219 . (6)

After obtaining the expressions forū(r ) andw̄(r ), the analytical
expressions forū8(r ),ū9(r ), w̄8(r ),w̄9(r ), andw̄-(r ) in terms of
the unknown solution parametersb i and g i may be obtained.
Substitutingū8(r ), ū9(r ), w̄8(r ), w̄9(r ), andw̄-(r ) in the origi-
nal Eqs.~1! and ~2! at r 5r i , two coupled nonlinear algebrai
equations inb i and g i are obtained. In a similar way one ma
continue obtaining nonlinear equations for the conditionally c
stant parametersb j andg j ( j 51,2, . . . ,n) at all the intersection
points. This results in ‘‘2n’’ nonlinear algebraic equations in 2n
13 unknown parametersb j and g j ( j 51,2, . . . ,n) and u8(r
50), w(r 50), w9(r 50). It may, however, be observed that fo
the present problemu, w, andw8 or Mr are known at the right
end, i.e.,r 5a. Thus, in the conditional initial value problem ap
proach, the unknownsu8(r 50), w(r 50), w9(r 50) are to be so
determined as to result in a constrained dynamical trajec
which satisfies the boundary conditions atr 5a. This constraint
condition leads to the required additional equations via the a
lytical expression available forū(n)(r ), w̄(n)(r ) and w̄8(n)(r ).
Since equations are coupled, one has to solve all the nonli
Journal of Applied Mechanics
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algebraic equations simultaneously in order to obtain the equ
rium path of the structure. In the present study, a globally conv
gent nonlinear equation solver based on line searches and b
tracking along the Newton directions~see@3#,! has been adopted
for solving the system of the nonlinear algebraic equations.

3 Results and Discussion
The aforementioned method has been used to obtain the ela

large deflection response of the uniformly loaded circular pl
with various boundary conditions. In the present case, to av
singularity at the center, a central small hole~the ratio of hole to
plate radii is 0.005! is considered. While the deflections are eva
ated at the edge of the hole, the moments and stress resultan
calculated slightly inside the plate, i.e., at a distance of ‘‘0.01a’’
from the center. Good convergence of deflection at the free e
has been observed and they are not presented here for the sa
brevity. The results are presented taking 40 divisions along
radius.

Way @4# has obtained exact results for the large deflect
analysis of a clamped circular plate. The present results are c
pared with that of Way’s results in Figs. 1 and 2.

Fig. 1 Load-deflection curve for the uniformly loaded circular
clamped plate

Fig. 2 Load-membrane Õbending stresses curves for the uni-
formly loaded circular clamped plate
SEPTEMBER 2001, Vol. 68 Õ 815
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It is observed that the results compare well. The LTL results
compared with the exact solutions given by Federhofer and Eg
@5# for the case of simply supported plate in Table 1. Even
very high nonlinearity, the deflections obtained from the pres
method compare well with the Federhofer and Egger. Howeve
the case of stresses and moments the comparison is not that
This may be due to the reason that the exact method em
insufficient terms in the representation of the displacements. H
ever, in the LTL method such problems do not arise as the n
linear equations are exactly satisfied.
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On Characteristic Times in
Generalized Thermoelasticity

D. V. Strunin
Department of Mathematics and Computing,
University of Southern Queensland,
Toowoomba, QLD 4350, Australia

The model of Green and Lindsay is a popular generalization
the theory of thermoelasticity incorporating second sound. Wit
the model the second sound is intimately linked to a presenc
two characteristic times, t1 and t2 , constrained by an inequality
t2<t1 . We present a modification of the theory where no c
straints on the times arise.@DOI: 10.1115/1.1386696#

The classical Fourier law of heat conduction leads to insta
neous propagation of heat to infinitely remote areas of space.
paradox is traditionally surmounted by describing the heat sig
as a wave, called second sound. One of the most popular ge

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 7, 2000; final revision, May 1, 2001. Associate Editor: D. A. Siginer.

Table 1 Large deflection of uniformly loaded simply sup-
ported circular plate „nÄ0.25…: comparison of locally transver-
sal linearization „LTL … and exact results

qa4/Eh4

Results obtained from LTL Federhofer and Egger

wc /h
s r

ma2/Eh2

~Edge!
s t

ba2/Eh2

~Edge! wc /h
s r

ma2/Eh2

~Edge!
s t

ba2/Eh2

~Edge!

3.07 0.884 0.478 0.715 0.882 0.469 0.714
7.18 1.247 0.984 1.052 1.245 0.967 1.051

25.66 1.966 2.595 1.780 1.965 2.544 1.780
102.64 3.132 6.948 3.046 3.136 6.798 3.042
205.28 3.952 11.083 3.954 3.953 10.943 3.933
307.92 4.522 14.625 4.593 4.526 14.432 4.557

q—is the intensity of uniformly distributed lateral load
wc—central deflection
E—Young’s modulus;s r

m—radial membrane stress;s t
b—tangential bending stress
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alizations of the thermoelasticity theory allowing for the seco
sound is the model of Green and Lindsay~GL! ~@1#!. It contains
two characteristic times: one,t1 , in the momentum equation an
the other, directly responsible for the second sound time,t2 , in the
energy equation. The model asserts~see also@2#! that

t2<t1 . (1)

Due to lack of measurements, theoretical knowledge oft1 and t2
is highly desirable. So far condition~1! was exploited, e.g., in@3#,
to estimate a lower limit fort1 on the basis of an independen
theoretical estimate fort2 . Inequality~1! also has qualitative con
sequence: It is prohibitive for spontaneous thermomechanica
stability. This implies that in an isolated body which is not su
jected to external forces and heat sources, small deformations
small temperature gradients cannot grow.

Here we formulate a modified version of the GL model, whe
the condition~1! does not appear. First, consider an entropy p
duction inequality~@4,5#! which underlies the GL model.

2r0S ]c

]u
1h

]f

]u D u̇2r0S ]c

]u̇
1h

]f

]u̇
D ü2r0S ]c

]u,A
1h

]f

]u,A
D u̇,A

1FsAB2
1

2
r0S ]c

]eAB
1

]c

]eBA
D2

1

2
r0hS ]f

]eAB
1

]f

]eBA
D G ėAB

2
QA

f F ]f

]u
u,A1

]f

]u,B
u,BA1

]f

]u̇
u̇,A1

1

2 S ]f

]eMN
1

]f

]eNM
D

3eMN,A1
]f

]r0
r0,A1S ]f

]XA
D 8G>0, (2)

whereXA are the reference coordinates;u is the deviation of tem-
perature from some basis temperature,u0 ; r0 is the density; a
superposed dot denotes differentiation with respect to timet;
prime denotes partial differentiation holding all independent va
ables exceptXA fixed; , A denotes partial differentiation with re
spect toXA ; QA is the heat flux per unit area of theXA-plane;
tensorsAB is represented through the Cauchy stress tensort ik by
(detxi, A)tik5xi, Axk,BsAB ; xi are spatial coordinates; andeAB
5(1/2)(xr , Axr ,B2dAB). The valueQA can be expressed throug
the usual heat flux,qi , by (detxi,A)qi5xi,AQA . Further, the func-
tion c is related tosAB via sAB5(r0/2)(]c/]eAB1]c/]eBA); and
the functionf is connected toc, specific internal energy,«, and
specific entropy,h, via c5«2hf. To satisfy~2! Green and Lind-
say chose to set to zero several terms in~2!, leading to six equa-
tions, one of which is

r0S ]c

]u̇
1h

]f

]u̇
D ü50, (3)

so that a sum of only a few terms of~2! is non-negative:

2r0S ]c

]u
1h

]f

]u D u̇2
QA

f F]f

]u
u,A1S ]f

]XA
D 8G>0. (4)

Consider small temperature deviationsu and displacementsui
(ui5xi2Xi). Then, assuming the functionc to have the formc
5c(u,u̇,u ,i ,ei j ), whereei j 5(1/2)(ui ,k1uk,i), and the functionf
to have the formf5f(u,u̇) and going over from the variable
XA to the variablesxi , one can expand these functions into t
Taylor series:

r0c52au2bu̇2
1

2
du22euu̇2

1

2
f u̇21aiuu, i1ai jkei j u,k

1aikeiku1bikeiku̇1
1

2
akrsu,ru,s1

1

2
kikrseikers , (5)

f5u01u1au̇1buu̇1
1

2
gu̇2.

Using~3!, ~4!, and~5!, Green and Lindsay eventually reduced~we
omit details! the entropy inequality to the form
-

© 2001 by ASME Transactions of the ASME
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~da2h!u̇21ki j u, iu, j>0, (6)

where by definitionh5a f 2bg/a2. Equation~6! must hold for
any physically possible temperature field. Therefore, taking i
account that the thermal conductivity tensorki j is positive-
definite,~6! is met provided thath/d<a which is just the relation
~1! wheret25h/d, t15a.

Let us consider different way of satisfying the entropy inequ
ity by exchanging the terms between~3! and ~4! as follows:

r0S ]c

]u
1h

]f

]u D u̇50, (7)

2r0S ]c

]u̇
1h

]f

]u̇
D ü2

QA

f F]f

]u
u,A1S ]f

]XA
D 8G>0. (8)

The rest of the five equations are identical to those in the orig
GL model ~@1#!. Using ~7! and ~8! we transform~2! to

~b2aa!ü1~e2da2ab!üu1~ f 2ea2ag!üu̇

1aiaüu, i1~2bik1aika!üeik1
ai

a
uu, i

1
arsi

a
ersu, i1ki j u, iu, j>0. (9)

Equation ~9! must hold for all physically possible temperatu
fields and thus similarly to@1# we require

b5aa, ad5e2ab, f 5ea1ag, ai50,
(10)

bik5aika, arsi50.

The entropy inequality~9! then becomes

ki j u, iu, j>0. (11)

Relation~11! imposes no restriction on the times,t1 andt2 , aski j
is positive-definite. It can be shown that energy and momen
equations have virtually the same form as in the original mo
with the only difference being another representation of the co
ficient of the thermal relaxation termü.

Consider a thermomechanical system in the form of a clo
wire ~ring!. Supposing a curvature small and neglecting its affe
on dynamics write the governing momentum and energy eq
tions for longitudinal thermomechanical disturbances in non
mensional form

ü2uxx2bux2bt1u̇x50,
(12)

t2ü1 u̇2xu̇x2uxx50,

whereb andx are positive thermomechanical constants,t1 andt2
are the nondimensionalized times,t1 and t2 , respectively. As the
model is linear, it will suffice to study a behavior of harmon
disturbances,u5U exp(vt1ikx) and u5U exp(vt1ikx), where
the wave number,k52p/L ~L is the perimeter of the wire!, is a
real number and the frequency,v, is a complex-valued function o
k. Although straightforward our linear analysis is different fro
the recent analysis~@6#! performed in the spirit of@7# wherek was
assumed to be a complex function of realv. Equations~12! result
in the characteristic equation

t2v41v31~t2111bxt1!k2v21~11bx!k2v1k450. (13)

Analysis~@8#! of ~13! shows that ifS[(t22t1)(11xb),1 then
Rev,0, that is the disturbances decay and the reverse ifS.1
then Rev.0, so that the disturbances grow. Within the origin
GL theory t2<t1 , S,0,1, and hence the growth of displace
ment and temperature is impossible. In the modified model
value ofS in principle is not restricted~although due to smallnes
of t1 andt2 it may still be less than 1 even whent2.t1!. From
theoretical point of view the possibility of instability presents co
siderable interest. Remark that balance equation for total ene
following from equations of motion and thermal energy transf
is met regardless of specific form of solution, be it growing
decaying.
Copyright © 2Journal of Applied Mechanics
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The above consideration reveals a possibility of new formu
tion of the GL model. Which of the two models~the original or
modified! is preferable is not clear so far. We view this question
a part of wider issue concerning the selection of the most real
model of generalized thermoelasticity. Alongside with the G
model there are other thermoelasticity models allowing for
second sound, for instance the known Lord-Schulman~LS! model
~@9#!. Unlike the GL theory it contains only one characteris
time, namely the thermal relaxation time which is analogous tot2 .
The analysis~@8#! showed that in the LS model spontaneous
stability is impossible so that small disturbances decay. But de
rates in the LS and the GL models are different in the gene
case. It seems that in the final analysis the selection of the m
adequate model has to be based on how well it agrees with
periments. The~hypothetical! spontaneous instability could be
tempting target for experimental detection. If detected for so
material the effect would provide a convincing argument in fav
of our version of the GL model. If not, other experimental ev
dences will be necessary to support particular model.
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Closed-Form Solutions for the Stress
Fields Induced by Blunt Wedge-
Shaped Indenters in Elastic Half-Planes
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Closed-form expressions are given for the Muskhelishvili pot
tials created by wedge-shaped indenters contacting elastic h
planes. The potentials are given for normal and sliding contac
both similar and dissimilar materials. Surface values of the te
sion sxx

0 are also presented.@DOI: 10.1115/1.1386697#
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1 Introduction
This paper concludes a series of work which examined the s

of stress caused by wedge-shaped indenters penetrating e
half-planes ~@1–3#!. Several reasons motivated the study. F
power-law indenters which have profiles of the formr l, solutions
are well known forl50, 2 and higher even values. The solutio
for l51, to be discussed in this note, is currently only available
specialized conditions which will be mentioned. As well as be
a fundamental geometry there has been a need for the stress
created by such indenters for use in fretting fatigue tests~@4#!.
Traditionally Hertzian indenters (l52) have been used, but i
order to validate crack initiation theories and wear models ot
geometries have also been used in order to compare results
simplest such geometry is the wedge, depicted in Fig. 1, where
load is shown applied with a small offsetc from the center of the
indenter. The casec50 corresponds to the case when the inden
and substrate are made of similar materials or the coefficien
friction is zero.

This basic configuration can also be used to model asper
~@5#! or study the motion of styli over disks, although it should
pointed out the analysis uses first-order theory so only applie
wedge angles of greater than about 160 deg.

2 Formulation
The basic equations, linking the stressess i j with the Muskhe-

lishvili potential F are ~@6,7#!

sxx1syy52@F~z!1F~z!#

syy2sxx12isxy52@~ z̄2z!F8~z!2F̄~z!2F~z!# (1)

where

F~z!5
1

2p i E21

1 p~x!2 iq~x!

x2z
dx. (2)

p(x) is the contact pressure distribution,q(x) is the shear traction
distribution which, for the sliding case,q(x)5 f p(x), with f being
the coefficient of friction and an overbar representing comp
conjugation. In what follows, all variables are considered norm
ized with respect to the contact half-widtha.

3 Interior Stress Field

3.1 Similar Materials. For the wedge indenter, shown i
Fig. 1, it can be shown that for similar materials~or, more spe-
cifically, if any shear tractions do not influence the normal pr
sure distribution! ~@7#!

p~x!5p0 cosh21~1/uxu!, uxu<1 (3)

wherep052u/pA, andA is the composite compliance, given b

Fig. 1 The geometry of the problem. A wedge loaded by a nor-
mal force, P, and a tangential force, Q. When the materials are
similar cÄ0.
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with k i5324n i in plane strain andk i5(32n i)/(11n i) in plane
stress andn i andm i representing Poisson’s ratio of bodyi and the
modulus of rigidity of bodyi, respectively. By substituting Eq.~3!
into Eq. ~2! it is found

F~z!5
ip0

2
~12 i f !sin21S 1

zD . (4)

This can be compared with the result obtained in an ear
study ~@1#!, namely

F~z!5 ip0~12 i f ! (
n51,2

`
~21!~n21!/2

n
~z2Az221!n

where the notationn51, 2 implies that summation is over od
values ofn only. It is straightforward to sum this series and sho
agreement with Eq.~4!. A more general result for the Muskhe
ishvili potential for stick-slip of similar materials has been pr
sented by Ja¨ger @8#. The removal of the summation sign great
increases the usefulness of the solution. As described in@6,7# it is
now routine to determine the stress components from Eqs.~1!.

3.1.1 Surface Values of Stress.The tension in the surface
sxx

0 , is a useful quantity to know as it is one parameter wh
governs the growth of surface cracks, caused for instance by
ting. From Eq.~4! and Eqs.~1! this is determined as

sxx
0 5p0H f p sgn~x!1 lnS 11A12x2

uxu D J , uxu,1

5 f p0$p22 tan21~Ax221!%, x.1 (5)

where it can be seen that the stress field is logarithmic
singular.

3.2 Dissimilar Materials

3.2.1 Normal Contact. In the section above, covering th
case of similar materials, the normal and sliding cases were
treated separately. This was because, for similar materials, u
normal indentation only, no shear tractions arise. However,
dissimilar materials, even under purely normal indentation, sh
tractions arise because particles in each surface undergo diffe
amounts of tangential displacement depending upon their mat
constants. In this section the stress fields generated in the full
regime will be found, i.e., it will be assumed that the shear tr
tion is everywhere limited by Coulomb’s law but is an odd fun
tion of position, i.e.,q(x)52 f p(x) for x,0 andq(x)5 f p(x)
for x.0. It should be remarked that Spence@9# showed that there
will always be a finite stick zone, unless the coefficient of frictio
is identically zero, but the solution to be obtained is a good
proximation for low values of friction. For the case of norm
indentation only, the shear traction is assumed not to influence
normal traction, an often-used approximation associated w
Goodman@10#. In other words the problem is assumed uncoup
in the normal and shear tractions. This assumption is relaxed
the sliding case treated later.

With these assumptions an extra term to be combined with
~4! evaluated withf 50 is found to be

Fd~z!5
f p0

2p H S sin21S 1

zD D 2J (6)

which can be compared with the result shown in@2#, which is
omitted here for brevity, and the simplicity of the new result
obvious.

Surface values of stress.By combining Eqs.~4! and ~6! the
Muskhelishvili potential is found to be
Transactions of the ASME
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F~z!5
ip0

2 Fsin21S 1

zD2
i f

p H sin21S 1

zD J 2G . (7)

The surface value of the tension is then

sxx
0 5

p0

p H p lnF11A12x2

uxu G
12 f S p2

4
2S lnF11A12x2

uxu G D 2D J , uxu,1

5
f p0

p H sin21S 1

xD J 2

, x.1 (8)

which, again, is logarithmically singular.

3.2.2 Sliding Contact. The final problem consists of dete
mining the Muskhelishvili potential for full sliding contact of tw
dissimilar materials. The problem is considered fully coupled
the sense that the pressure distribution influences the shear
tion andvice versa. The pressure distribution arising for this co
figuration is given by~@3#!

p~x!55
2

2

p
p0

sin2~pB!

12B S C

XD 12B

2F1S 1,12B,22B;
C

XD ,

x,c

2
2

p
p0

sin2~pB!

B S X

CD B

2F1S 1,B,11B;
X

CD ,

x.c

wherec is the offset of the indenter from the line of action of th
normal load, associated with the elastic mismatch and show
Fig. 1 and

tan~pB!5
1

b f

where

b5
G~k111!2~k221!

G~k111!1~k211!
, G5

m2

m1

is the elastic mismatch of the two materials, and

C5
~12c!

~11c!
, X5

~12x!

~11x!
and Z5

~12z!

~11z!
.

If we let v5Z/C we find

F~z!5
i ~12 i f !

p2 p0 sin2~pB!

3H 1

B~12v! 3F2F 1, 1, 1,

11B, 2,
;

1

v21G
1

v

~12B!~12v! 3F2F 1, 1, 1,

22B, 2,
;

v

v21G
Journal of Applied Mechanics
-

in
trac-
-

e
in

2
12c

2B 3F2F 1, 1, 1,

11B, 2,
;2

1

2
~12c!G

1
11c

2~12B! 3F2F 1, 1, 1,

22B, 2,
;

1

2
~11c!G J (9)

where3F2 is a generalized Hypergeometric function. This is va
provided that

uarg~12v!,pu and UargS 12
1

v D U,p,

which corresponds to everywhere except on the linez50 inside
the contact zone.

4 Conclusion
Results have been presented in closed form for the Muskhe

vili potential associated with the two-dimensional contact of
wedge and an elastic half-plane. This enables rapid and e
determination of all the surface and interior stress values. Clos
form solutions were also obtained for the surface values of ten
sxx

0 for a couple of important cases. This quantity is thought to
responsible for propelling surface cracks, caused either by mo
tonic or cyclic loading.

The pertinent equations were~4!, ~7!, and~9! and their simplic-
ity over existing solutions~where they existed! was demonstrated
Where previous solutions existed the simplicity of the new res
is obvious.
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