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Linear Thermoelastic
Higher-Order Theory for Periodic
s.aousi | Multiphase Materials

Tel-Aviv University,

Ramat-Aviv 69978, Israel ) ) ) o ) .
A new micromechanics model is presented which is capable of accurately estimating both

M.-J. Pindera the effective elastic constants of a periodic multiphase composite and the local stress and
Civil Engineering Department str_ain fields in the individual phases. The model is_ presentﬂly Iimited to mat.eria.ls charac-
University of Virginia, terized by constituent phases that are continuous in one direction, but arbitrarily distrib-
Charlottesville, VA 22903 uted within the repeating unit cell which characterizes the material’s periodic microstruc-
Mem. ASME ture. The model's analytical framework is based on the homogenization technique for

periodic media, but the method of solution for the local displacement and stress fields

S. M. Arnold borrows concepts previously employed by the authors in constructing the higher-order
NASA Glenn Research Center, theory for functionally graded materials, in contrast with the standard finite element
Cleveland, OH 44135 solution method typically used in conjunction with the homogenization technique. The

present approach produces a closed-form macroscopic constitutive equation for a peri-
odic multiphase material valid for both uniaxial and multiaxial loading which, in turn,
can be incorporated into a structural analysis computer code. The model’s predictive
accuracy is demonstrated by comparison with reported results of detailed finite element
analyses of periodic composites as well as with the classical elasticity solution for an
inclusion in an infinite matrix. [DOI: 10.1115/1.1381005

1 Introduction sent the average response of the entire composite. RVE-based
erglodels employ homogeneous displacement or traction boundary
c)chq_nditions, whereas symmetry or periodic boundary conditions
e employed in RUC-based models. Typically, RVE-based ap-
I%r_oaches employ simplified geometric representations of the en-
{}re composite for which analytical solutions under homogeneous

%}{splacement or traction boundary conditions are readily avail-

applications. Many advanced applications require the use of engj- i
neered material microstructures which necessarily involve the u bele' RUC-based approaches, on the other hand, model the actual
icrostructure of a material’s subvolume which is assumed to

of multiphase material concepts. Micromechanical modeling techy .
niques offer an efficient approach to developing an understandi eat itself, and therefore (_)ft(éhut not always, .Cf" Walker el f_i"

of how different microstructural details affect the average ard)) "ely 0n numerical solutions of the governing field equations
local responses of multiphase materials. Thus they can be em9 finite difference, finite element, or boundary element meth-

ployed by boih e mechanics and materias communite a5 {55, SYTIeCY Moy cordions are bpeal enpored
sign and diagnostic tools in developing and analyzing different . P ; plane y
metry which are not altered under loading. Periodic boundary con-

microstructural concepts for a given application. The fact that ney. : -
approaches are continuously being proposed attests to the imég??”? must be applied to the RUC in the absence of planes of
Mmaterial symmetry or symmetry-preserving loading. These differ-

tance of this area of research. e .
A large body of literature exists which deals with the micromeSMt Poundary conditions ensure that the deformation of an RUC

chanical modeling techniques for heterogeneous materials deyéi & SPECific microstructure remains compatible with the defor-
oped during the past several decades, and thus a comprehen&ghon Of its neighbors. The use of periodic boundary conditions
review of these techniques is beyond the scope of this articlg,coniunction with a multiscale asymptotic expansion of the dis-
These include use of simple Voigt and Reuss hypotheses, sejpcement and stress fields in the RUC forms the basis of the

consistent schemes and their generalizations, differential scherr?é)éca"ed homogenization methods for estimating the effective

concentric cylinder models, bounding techniques, and appro roperties of periodic materials. Reviews and comparisons of the

: o : ; jfferent approaches have been provided by ChristeriSgn
mate or numerical analyses of periodic arrays of inclusions f : i . ; "
fibers in the surrounding matrix phase. The various approac iOUd' [4], Hollister and Kikuchi[5], Nemat-Nasser and Horii

Micromechanical modeling of multiphase materials continu
to be an important area in both the mechanics and materials ¢
munities due to the need for the development of new materials
use in wide range of modern applications. These include ae
space, aircraft, biomedical, electronic, and recreational indus

may be divided into three broad categories: those based on Parton and Kudryavtse{7], Amnold etal. [8], and

direct calculation of Hill's stress or strain concentration matrice$;2 amkarov and Ko_lquo{/g], among others. .
Hill [1], and those based on the concepts of a representative volln the case of periodic multiphase materials characterized by an

ume elementRVE) and a repeating unit celRUC). A major arbitrary distribution of different phases within the RUC, the ho-
difference between the latter two categories lies in the bounddRP9enization theoryct. reference$7] and[9] for comprehensive

conditions applied to a material subvolume considered to repf&views of the theoryis an effective tool for determining the
material’s effective moduli as it provides the correct periodic

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF .boundary C(.)ndltlons .that .mUSt be applled t.o .the RUC under load
MECHANICAL ENGINEERSfor publication in the ASME GURNAL oF AppLIEDME- NG @long different directions, thereby avoiding ad hoc assump-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augustions on the deformation of the RUC’s bounding surface. This, in
21, 2000; final revision, February 12, 2001. Editor: L. T. Wheeler. Discussion on thgrn, allows the determination of all the effective moduli for ap-

aper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department : : : T : : :
f\)/le%hanical Engineering, University of Houston, Houston, TX 77204-4792, and Wﬁﬁfcatlons mVOng mU|t|aX|a.l Ioadmg Ina rat_lonal manner. How-
be accepted until four months after final publication of the paper itself in the ASMEVET, With the exception of simple RUC architectures amenable to
JOURNAL OF APPLIED MECHANICS. analytical solutions, the evaluation of the effective moduli is per-
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formed by conducting a numerical analysis of the RUC, typically /
based on the finite element approach. For example, the homogeni
zation technique has been employed in conjunction with the finite ®
element procedure by Banks-Sills et @l0] to analyze compos-
ites in which the repeating unit cell has no planes of material V
.f
®

Repeating
Unit Cell

symmetry.
Herein, a new analytical model for the determination of the
effective moduli of periodic multiphase materials, characterized b

by constituent phases continuous along one direction, is presente:
that circumvents the use of a finite element solution for the dis-
placement and stress fields within an RUC. The model’s analyticalxz
framework is based on the homogenization technique, but the
method of solution for the local displacement and stress fields
within an RUC borrows concepts previously employed by the
authors in constructing the higher-order theory for functionally
graded material§Aboudi et al.[11]). It is shown that the model
is capable of accurately estimating both the effective elastic X3
moduli of periodic composites and the local stress and strain fielf_jls ) . A o
. Lo . . .Fig. 1 A multiphase composite with a periodic microstructure
in the individual constituents. The fully analytical nature results ip %, X,—x plane characterized by a repeating unit cell  (high-
closed-form expressions for all the effective moduli of a periodigypteq )
multiphase material under multiaxial loading which, in turn, can
be incorporated into a finite element analysis of a structural com-
ponent. Incorporation of the model into a structural analysis code
is further facilitated by the ease of an RUC’s construction. Peri- Uai(X,Y) = Uqi(x,y+d) 3)
odic multiphase materials with arbitrary phase distributions in thehered is the local length scale characterizing the material’s pe-
plane normal to the direction of continuous reinforcement can kigdicity.
accommodated, whose response in this plane is fully anisotropicThe displacementy, is the average value af and hence it is
not a function ofy; . Indeed, it can be formally shown thag; is
a function ofx; only by employing the equilibrium equations in
2  Theoretical Framework conjunction with the Hooke’s lavcf. Kalamkarov and Kolpakov

The homogenization approach is employed herein to constrlgg{'et
the displacement field approximation at the local microstructural o
level of a multiphase periodic material in a consistent fashion, and Uo; = Ugi(X)=U 4)
to derive the governing field equations and the boundary condjsq
tions that the displacement field must satisfy. The elements of the
homogenization technique employed in constructing our theory Uy =T;(x,y) (5)

are outlined first in Section 2.1. Section 2.2 defines the stigjfhore the first-order terms are the fluctuating displacements
concentration tensor employed in the calculation of the effecti

. . S S EC\fhich are unknown periodic functions. These displacements arise
stiffness tensor of a multiphase periodic material discussed in Sﬁﬁ'e to the heterogeneity of the medium

tion 2.3. The method of determining the displacement, and thusDue to the change of coordinates from the global to the local

strain and stress, fields within the repeating unit cell is describg : . : :
; . o - . stems the following relation must be employed in evaluating the
in Section 2.4. Section 2.5 outlines how the local strain concefgz .. . owing e ploy g

- . A : .~ —derivative of a field quantity:
tration tensors are obtained once the displacement field within the
repeating unit cell is known, and how these tensors are used to d g 1 9
construct the macroscopic constitutive equation for the given unit x  ax + 5 W (6)
cell in terms of the effective elastic stiffness tensor. b ' .

o ] Therefore, upon employing Ed6), the strain components are

2.1 Elements of the Homogenization Theory. Consider a determined from the displacement expansibnin the following

multiphase composite wherein the microstructure is periodicalfgrm:

distributed in the plan&,— x5 defined by the global coordinates _ _

(X2,X3); see Fig. 1 where the repeating unit cell used to construct €= €j(X) TE;(Xy) +0(9) (1)
the periodic array is highlighted. In the framework of the homogynere

enization method the displacements are asymptotically expanded

as follows: _ 1(du; dy;
. €i(X)=5| ot (8)
Ui(X,Y) = Ugi(X,Y) + 8Usi(X,y) + 6°Uai (X,y) + . ... @) ! !
where x=(x; ,X,,%5) are the macroscopiégloba) coordinates, 21d
andy=(y1,Y».y3) are the microscopiglocal) coordinates that 1(dU, U
are defined with respect to the repeating unit cell. The size of the €j(xy)= 3 (W + a_yj) 9
] I

unit cell is further assumed to be much smaller than the size of the
body so that the relation between the global and local systemsTikis shows that the strain components can be represented as a
sum of the average straé, (x) in the composite and a fluctuating

yi:X—(; @) strain’é;; (x,y). It can be easily shown that
1 1 _ _
wheredis a small scaling parameter characterizing the size of the V—f sijdvyzv— f (€ +€;)dV,=¢
unit cell. This implies that a movement of order unity on the local y y

scale corresponds to a very small movement on the global scalehereV, is the volume of the repeating unit cell. This follows
The material's periodicity imposes the following constraint owlirectly from the periodicity of the fluctuating strain, implying
the different-order terms,; («=1,2,...) in Eq.(1): that the average of the fluctuating strain taken over the unit re-
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peating cell vanishes. For a homogeneous material it is obvious Y,
that the fluctuating displacements and strains vanish. A L
Using (7), one can readily represent the displacements in the

form ‘ ‘ iR
Ui(X,y) :?” X] +TJ| +O(52) (10) ﬁ;‘g

This representation will be employed in constructing an approxi- i
mate displacement field for the solution of the cell problem dis- H
cussed in Section 2.4.

For an elastic material the stresses are related to the strains i -
according to the Hooke’s law as follows: : ‘

0ij = Cijui €k (11) af
where Cj;,(x) are the components of the stiffness tensor of the > Y3
composite’s phases. The stiffness tensor forms a periodic function (a)
that is defined in the unit repeating cell in terms of the local
coordinates/ such that
Cij (X)=Cija(y). (12)

Substituting(7) into (11) and differentiating with respect to the p=2, y=2

microvariable coordinateg; leads to ’
d _ ~ p=1, y=2
a—ycijm(Y)[fm(X)“‘Ek|(X,Y)]:0, (13)
j i
Let us define the following stress quantities: 40 0
o8 =Ci () au(x) (14) generic cell (q,r)
3= Cija (Y &a(Xy) (15) )

with the latter being the fluctuating stresses. It follows then thaFig. 2 (&) Volume discretization of the repeating unit cell em-
. 0 ployed in the present model, (b) generic cell within the repeat-
doij  doy 0 (16) ing unit cell

—_—t —=

ay;  dy;
which is the strong form of the equilibrium equations. It is readily

seen that the first term if6) involves the unknown fluctuating ated with the defined repeating unit cell. This tensor expresses the
periodic displacementsi;, while the second term producesiocal strain in the cell in terms of the external average strain. To
pseudo-body forces whose derivatives are actually zero evefjis end, let us define the fourth-order tenfowhich relates the

where except at the interfaces between the phases. fluctuating strain to the average strain
For given values of the average straig, the unknown fluc- B
tuating displacements are governed (@) subject to periodic €=A(y)e. (20)

boundary conditions that are prescribed at the boundaries of o E (7), we readily obtain the required strain concentration
repeating unit cell. In addition to these boundary conditions o gAq. ' foll ) y q
needs to impose the continuity of displacements and tractionst%l?sor () as follows:
the_ intlelrnal interfaces between the phases that fill the repeating e=e+A(y)e=[l,+A(y)Je=A(y)e (21)
unit cell.

Suppose that the repeating unit cell is given in the plgne Wherely is the fourth-order identity tensor:
—y3 (with fibers oriented in the 1-directiprby a rectangle de-

i . . 1

fined with respect to the local coordinates by@,<H, O<y3 (|4)ijk,=§(5ik5j|+6i,5jk)
<L, Fig. 2a). Consequently, the periodic boundary conditions

are given by with &;; being the Kronecker delta.

To obtain the strain concentration tengqfy) a series of prob-

Ui(y2=0)=Ti(y2=H) lems must be solved as follows. Solve E@s6) in conjunction

05i(Y2=0)=05(y,=H) (17) with the internal interfacial and periodic boundary conditions with
‘€11=1 and all other components set to zero. The solutioflL6f
and readily providesA;y; for i,j=1,2,3. This procedure is repeated
Ti(y3=0)=Ti(ys=L) with e,=1 and all other components set to zero, which provides

Ajj22, and so on.

73(Ya=0)=05(ya=L) (18) 53 Effective Stiffness Tensor. Once the strain concentra-
where the total stressvhich is given by(11)) is expressed as  tion tensorA(y) has been determined, it is possible to compute
_ 0, 1 the effective stiffness tensor of the multiphase composite as fol-
7ij = oij + 7. (19 |ows. Substitution ofe given by (21) in (11) yields
It is also necessary to fix the displacement field at a point in the o=C(y)A(Y)e 22)

repeating unit cell.
. . . Taking the average of both sides of H§2) over the repeating
2.2 Strain Concentration Tensor. Once the solution of

(16), subject to the internal interfacial continuity conditions an(init cell yields the average stress in the composite in terms of the
Al . . verage strain via the effective elastic stiffness t rnamel
periodic boundary conditiond 7)—(18) has been established, one 9 € S tef¥g y

can proceed to determine the strain concentration tensor associ- o=C*e
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where whereT'{f? are the thermal stress coefficients.
1 The equilibrium Eqs(16) in conjunction with(19) for the ma-
Ccr= —f C(y)A(y)dVv (23) terial occupying the subcell(8y) in the region [y
Vy <h{/2, [y§’|<1{/2 can be written in the form
2.4 Method of Solution for the Cell Problem. In this sec- (By) By i
tion we present a solution methodology of E¢&6) for two- 203"+ 3057 =0 |=1,2,3 @7)
dimensional multiphase elastic composites. In this case the repggere g, = g/dyt? andaz=a/dys” .

. ; . . Y3
ing unit cell extends over8y,<H, O<ys=<L given interms of  ag gated before, the fluctuating displacement field in the sub-

the local coordinatesyg,ys) as stated previously. The microstruC-ce|| (55 of the (q,r)th cell is approximated by a second-order
ture in they,—y; plane of the composite is modeled by discretizgypansion in the local coordinate system. Consequently, according

ing the cross section of the repeating unit cell idlg and N; 5 Eq. (10) the displacements in the subcell can be represented in
internal or generic cells in the intervalsy/,<H and 0<y; {phe form (omitting the cell labelgq,r))
<L, respectively. Figure (2) illustrates how the repeating unit '

cell highlighted in Fig. 1 could be discretized. In addition, every U =" x;+ W Y W + VS W)

generic cell consists of four subcells designated by the (gjy @2

where each index takes the values 1 or 2 which indicate the rela- 1 s g 87)

ve posit - i + 5| 37— L wif,

tive position of the given subcell along tlyg andys-axis, respec- 2 2 4 1(20)

tively, see Fig. ®). The indicesq and r, whose ranges arq 02
=1.2,...Ngandr=1,2,... N, identify the generic cell in the 1 '

y»—Y3 plane. The dimensions of the generic cell alongyth@nd *ts 3yy? - YT W (28)

ys-axes aren{? , h{ andl{”, 1§, such that ) :
U =65y, + WG, + VY W + VS W)

Ng N,
H=> (h¥+hi®), L= (1{+1%). 1y W
& =1 o3 Wi
This manner of discretizing a periodic material’'s microstructure (12
has also been employed in constructing the “_generalizeq method N 1 v2_ |\ 29)
of cells” (Paley and Aboudil12]). The construction of the higher- 2 Y3 4 2(02)
order theory for functionally graded materials characterized by
spatially variable microstructures without a definable repeating U ="egix; + W + VS W + V5 W)
unit cell is also based on such volume discretizatidboudi et al. @2
[11). _ o _ | gy D8
Given an applied macroscopic loading, an approximate solution 2 2 4 3(20
for the displacements field is constructed based on volumetric )
averaging of the field equations together with the imposition of 1 )2 (y” )
Lo A . . + = 3y Y2_ Y |\WBY. (30)
periodic boundary conditions, and both displacement and traction 2 3 4 3(02

continuity conditions, in an average sense between the cells and
subcells used to characterize the material’'s microstructure. Thisnbere Wi((%{,g, which are the volume-averaged fluctuating dis-
accomplished by approximating the fluctuating displacements jjlacements and the higher-order terwgnﬂ) (i=1,2,3) must be
each subcell using a quadratic expansion in terms of local Coorabtermined, as shown below, from the equilibrium E@) as
nates 7% y§) centered at the subcell’s midpoint. A higherwell as the periodic boundary conditiof7)—(18) that the fluc-
order representation of the fluctuating displacement field is necesating displacements must fulfill, as well as the interfacial conti-
sary in order to capture the local effects created by the fietdiity conditions between subcells. The number of unknowns that
gradients and the microstructure of the composite. This is in shafpscribe the fluctuating displacements in the tgh) is 60.
contrast with the generalized method of cells where the displace-The total strains in the subcéfBy) are given by(7) in conjunc-
ment expansion was linear as a result of which the coupling bgen with (8) and(9), namely
tween the local normal and shear effects was lost. 1

In the current deve!opment, we include spatlall_y l_mlform ther- B =g + _((Qiug;y)Jra_uww) 31)
mal loading characterized by the temperature deviatidrfrom a g 2 l I
reference temperature, in addition to mechanical loading. Further, ) .
the phases corresponding to the individual subcells are taken"4¥red1=0 andd,ds have been defined previously. Therefore,
orthotropic. Thus the constitutive relation of the material filinghe volume-averaged straie§}))  in the subcel(8y) of the cell
subcell(8,y) is obtained by generalizing E¢L1) as follows: (q,r) are obtained in terms of the displacement fi€28)—(30) as

follows (omitting (q,r)):

— T
oif V=l = i) (24) v
whereCi(j’de) are the elements of the stiffness tensor of the phase gy — 8
filling subcell (By) with nine independent constantg?? are the €22 = €22t Wy

total strains which are given bf7), and e[(*? are the thermal —By)_— (B7)
strains in these subcells, with no summation implied by repeated

Greek letters in the above and henceforth. Equatih can be 1
rewritten in the form B ="t E(W&‘f&{ﬁ\/\/&f{&)
_ T
Ui(jﬁy)_ Ci(ﬁ(pfl(dﬁv), U.ij(ﬁv) (25)

?87):?134_ E\N(By)
where the termrﬂ(f”), henceforth referred to as thermal stress, 13 2 10y
stands for the thermal contribution

—tBY)
aﬁ(B”=F§f7)AT (26) €57

1
€12t 5 V\/(llzlyg) . (32)
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In the course of satisfying the equilibrium equations in a volu- (q,r)

metric sense, it is convenient to define the following stress quan- -0l o+ 5 5 SZ](OO) 3857 o/,
tities:
, 2y 2 1
[Sftnn] " + 51800+ 6o/ =0 (46)
g (1 TPMT ) B dP )
) NaPY Y B1) B2> :
h(q)l(”f h(q),zj |<r>,2 )Y [Ty Y [ 12870 4/11+ S50 0~ 655 0.0/12]*"
2 Jo—=1)_
(33) —[S§i0.016S50,4/121% V=0 47)
For m=n=0, Eq.(33) provides the average stresses in the sub- (1) 1 52) 52) (@r)
cell, whereas for other values éf, n) higher-order stresses are —SooT j<o,o>_33<31<o,1)/|2

obtained that are needed to describe the governing field equations
of the continuum. These stress quantities can be evaluated explic-

2 2 —
itly in terms of the unknown coefficienw/{f;?), by performing the ) [$f<0) 0 +6S§0y/12] V=0 (48)
required volume integration upon substltutlng E@S), (31, and

(28)—(30) in Eg. (33). This yields the following nonvanishing wherej=1, 2, and 3. The details of derivation of equations simi-
zeroth-order and first-order stress-components in terms of the lm-to Eqs.(44)—(48) have been provided by Aboudi et §13] for

known coefficients in the displacement field expandiomitting a more general case of a microstructure containing periodic inclu-

(q,r)): sions in the out-of-plane direction.
. Equations(45)—(48) provide 24 additional relations among the
S0 =Ci e+ CEY (WL + e + CHY (W) + €30) zeroth-order and first-order stresses. These relations together with

Eq. (44), can be expressed in terms of the unknown coefficients
W{£2)) by making use of Eq¢34)—(43), providing a total of 36 of
1 the required 60 equations necessary for the determination of these
S&i?O):_h%q)zc(ﬁy>Wg€gg) (35) coefficients in the celig, r).
o4 The additional 24 relations necessary to determine the unknown
1 coefficients in the displacement field expansion are subsequently
S8y =ZI$)ZC&§”V\/3?J£> (36) obtained by imposing displacement continuity conditions on an

—TPYAT (34)

1100.0) average basis at each subcell and cell interface. This produces
with similar expressions for the other normal stress components, 1,00 (qr)
and V\ﬁnooﬂr haWiiig + 7 hi Wiigs,
B0 =CHY (2623+wg€g{)+w(€fg)) (37) oy 1 2y @7
= Wi~ 5hWitlo+ 7 T AR (49)
(BY) @28y B )
823(1 = h CLYWY33 (38) )
2y (2 2 2
L [W((Og)+ hzw(gg)+ h w<(gg)}
By) —Z1(N2:(By\w(BY)
S(23(0,1)_4 1y °Cla 7 W( 2(02) (39) (q+1r)
1 2 1
(BY) _ BV (o= WY =| Wit~ 3 1W(<f3>+ hIWii%) (50)
Si300=Cus” (2€15+ W(1<01)) (40)
<q,r>
v =1 12CEIWED) (41) [M(om* | V‘ﬁjfoll)ﬂr 1 Wifoz
(7) (B (e BY) 2 2 2]
S0 =Ce” (2Zer+ WiT)) (42) Wffoc;) | W}fof)"‘ 13Wife, (51)
S(lB :_ h(Q)ZC(ﬁV)W(B)’) ) (43) 1 1 (q,r)
21, 20 (B2) (82)
Wifoo + 51 WJ(01)+4I2W
where contracted notation has been employed for the stiffness 1 (r+1)
elementsC{fi . — Wiy~ 2 W(ﬁ()ll))+ 2w (52)
Subsequently, satisfaction of the zeroth, first, and second mo- I 2 ( (

ments of the equilibrium Eqs27) results in the following 12 wherej=1, 2, and 3, which comprise the required additional 24
relations among the volume-averaged first-order str 0 relation

in the different subcell$y) of the (qr) cell, after lengthy alge- e equilibrium relations, Eq$44), together with the traction
braic manipulations and displacement continuity conditions E¢$5)—(48) and (49)—

[SZB /h2 Sgﬁy) /|2](q,r):O j=1,2,3. (44) (52), respectively, form 60 equations in the 60 unknomggﬂv
10 10177y Y which govern the equilibrium of a subcéBy) within an interior
The continuity of tractions at the subcell interfaces and betweerll (g.r); g=2,... Ng—1, r=2,... N,—1. For the boundary

adjacent cells, imposed in an average sense, can be shown teéles g=1N, andr=1N, a different treatment must be applied.
ensured by the following relations: For cell(1,), the above relations are operative, except E4fS.

and(46), which follow from the continuity of tractions between a

[—12S57) o/hy+ S5 6 =BS5S o /h,] @) given cell and the preceding one. These 12 equations must be
(2y) (2) (@-1r)_ replaced by the conditions of continuity of tractions at the interior

—[Sl0.0 T 6S5j{10/h21""" =0 (45) interfaces of the cell1r) (imposed in the average sehsand by
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the conditions that the fluctuating displacements are periodic. 1t2.5 Global Constitutive Relations. Once the solutiot for
follows, by imposing the first relations ifl7) on an average a given set of average strairshas been established, we can

basis, that determine, in particular, the average strgie¥?](@" in subcell

1 1 (10 (By) of the cell(q,r) given by (32).
[W((lgg)_ —hl\/\ﬁ(lfgﬂr _hiw((lzy(;)} The average stress compone[”ﬁiﬁg(g?o)](q” in subcell(By) of
1552 4 - the cell(q,r) are given by Eqs(33), (36), (39), and(41). They can
(Ng.1) be assembled in a compact form as follows:

(53)

1 1
2y) 4 — (2y) 1 Z h2\w(27)
WIZ3 + 5 haWitg + 7 haWi2g

[Ség‘“&)](q,r):[C(By)gtﬁy),F(BV)AT](QM. (59)

wherej=1, 2, and 3. Both conditions provide the required 12 | ¢ s generalize the localization E1) (that was given in the

relations to be used for celLr). . _ elastic caseto the present situation which involves thermoelastic
For cell (Ng,r), the previously derived governing equations al'Bffects and write it in the form

operative except for the six relations given by E§®), which are
obviously not applicable. These are replaced by the conditions [€BM]@N=[ABY e+ DBVI@N (60)
that the tractions are periodic. Thus the second relatior{d7p
imposed on an average basis, provide the six equations to be uge@re[ A(¥”)](@") is the mechanical strain concentration matrix of
for cell (Ng,r) as follows: the subcellBy), and[ D¥"](@") js a vector that involves thermal
1 P effects in the subcell. In the absence of thermal effects this vector

Lo Iy - -yl * =[5 g2 - o] Mo (54)  vanishes, and we can readily determine frt6@) the mechanical
strain concentration matrpA (#”](@") py solving the systen67)
six consecutive times upon imposing a single nonzero component
of ‘€ one at a time.
The thermal analysis is performed by imposing a spatially uni-

where the stresses(?”) are given by Eq(25).
Similar treatments hold for boundary cellg,1) and @,N;).
Thus the 12 equation@7)—(48) are obviously not applicable in

cell (g, 1) and should be replaced by the conditions of continuity, ., tomoerature\T. Thus for a given value of applied thermal
of tractions at the interior interfaces of this célinposed in the load, the average straif@?”]@" in the subcell are also ob-

average senggeand by the conditions that the fluctuating displace

ments are periodic. The latter yield according to the first equati %ined from the solution of Eq(57), and hence the matrix
P y g q %D‘M](q‘) from (60) in the absence Of.

in (18), I ; )
(18 Substitution of(60) into (59) yields
1 1 (9,1 -
Wj(fgol()))— E'lW]((Bc)ll))+ Zli\/\/}fgolz)) [ng’%;](q,r):[C<B7)(A(B7)E+ DY) —TBYAT]@) (61)
1 1 (a,Np) The average stress in the multiphase periodic composite is de-
_ (B2) 4 — B2) o Z12\\(B2) i
=| Wi + 2|2M(01)+ 4|2\N}(02) (55) termined from
Ng N 2
For boundary cell §,N,), Egs.(52) are not operative and they = izq S K@ e an 62)
should be replaced by the periodicity of tractions which is given HL §&& &1 552 B Ty LX(00 :

by the second relation if18) that is imposed on the average basis:
Consequently, Eq961)—(62) establish the effective constitu-

1 A1) — 2 N . . . . .
[U(sﬁg )|?31>=—I1/2](q )—[0‘(3[13 )|V(32)=I2/2](q . (56) tive law of the multiphase thermoelastic composite in the form
Consequently, the governing equations for the interior and o=C*e—0o' (63)

boundary cells form a system of BQN, algebraic equations in

the unknown coeﬁicient\z\/i((ﬁ”}/%) . The final form of this system of whereC* is the effective elastic stiffness matrix of the composite

equations can be symbolically represented by which is given by(see also Eq(23))
KU=f 57 Ng N 2
®7) C* = 1 > > h@IOpcEnaBIEn  (64)
where the structural stiffness matixcontains information on the HL 4=1 =1 5521 Ay

geometry and thermomechanical properties of the materials within

the individual subcell$8y) of the cells comprising the multiphaseand o' denote the overallmacroscopik thermal stresses in the
periodic composite. The displacement vedtbicontains the un- composite given by

known displacement coefficients in each subcell, i.e.,

N N 2
-1 .49 T
U=[U, ... URR ] (58) ﬁ:mz S S h@I[CEDEN - [EYATIEN,
q=1r=1 B,y=1
where in subcellBvy) of cell (g, r) these coefficients are (65)
UL =[Wi00 . Wic10) . Wi - Wi20) Wicoa 187 1=1,2,3. Alternatively, the results independently obtained by Levid]

) o ] ] and Schapery15] can be employed to express the global thermal
The mechanical forcé contains information on the applied aver-stress in terms of the mechanical strain concentration matrices for
age straing;; and the imposed temperature deviativm. the individual subcells. The global thermal stress in the multi-
A careful check of the preceding equations reveals that thgase composite”=I'* AT (I'* is related to the effective coef-
equations that govern the normal and in-plé®e3 shear defor- ficients of thermal expansiore* of the composite byl™
mations are coupled, thus providing the necessary shear couplg@:* o*) is given in accordance with the Levin-Schapery formula

eff_eclztshOn t(l;ef othe;_hag‘d,zthesde fquq}ircl)ns t{;re nl;)t Coupletd to iW?erms of the mechanical strain concentration matrices and the
axial shear deformationd—2 and 18 Thus the above sys €M, thermal stress vector in the individual phases by

Eq. (57), can be decoupled in practical applications and solved for

the normal and transverse shear deformationith 40NN, alge- AT Mo N 2

braic equations separately from the axial shear deformations ;T:_E Z hi@I O ATBYTEN @D (66)
; i i L & < < By

(with 20NgN, algebraic equations q=1r=1 giy=1
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Table 1 Elastic moduli of constituent fiber and matrix materials

Material E11 (GPa  Exn(GPA G (GPa viy  vwas  ayy (1005/C)  ayp (107°/C)
Boron fiber 379.3 379.3 172.41 0.10 0.10 8.1 8.1
Aluminum matrix 68.3 68.3 26.3 0.30 0.30 23.0 23.0
Graphite fiber 235.0 14.0 28.0 0.20 0.25 - -
Epoxy matrix 4.8 4.8 1.8 0.34 0.34 - -
Glass fiber 69.0 69.0 28.75 0.20 0.20 - -

where[ A'(B1](@N) s the transpose of the mechanical strain correpeating unit cell for the graphite/epoxy systénot shown is
centration matrix] A" of subcell (By) within cell (g,r). Similar to that shown in Fig. 3 with the only difference being the
This provides an additional check on the consistency of the p@mensmns of the subcells in the matrix phase to account for the

posed approach. higher volume fraction.
Tables 2, 3, and 4 present comparison between the effective
3 Numerical Results and Discussion moduli and thermal expansion coefficients predicted by the

element results reported by Sun and Vaif$€] and Tamma and it cell geometry as shown in Fig. 3. In the case of the boron/
Avila [17]. Symmetry and periodic boundary conditions were img;,min,m system, Table 2, very good agreement is observed be-
posed on the deformation of the repeating unit cell in these INV&{een the present theory’s predictions for the effective elastic

tigations depending on the direction of the app_lied load. The "foduli and the results reported by Sun and Vaidya with the ex-
sults have been generated for two material systems W'Egption of the shear modulu§,, and the Poisson’s ratio,s
substantially different fiber/matrix elastic moduli mismatch. The hich are somewhat larger. However, the values for these moduli

materials systems are boron/aluminum and graphite/epoxy. Ta‘%gorted by Tamma and Avila are very close to those predicted by

1 gives t_he elastic mO(_jull of the constituent phases _for these t present theory. The generalized method of cells’ predictions
unidirectional composites. The fiber volume fractions of thg

boron/aluminum and graphite/epoxy composites are 0.47 aﬂge generally lowefwith the exception of the two Poisson’s ra-

r
. . . A s) than the present theory’s predictions, although the differences
0.60, respectively. Figure 3 shows the volume discretization of tla e)quite accgptable. As w)i/II k?e discussed in thg sequel, the gen-

repeating unit c_eII used in the analysis Qf the b_oron/e_llumlnug],alized method of cells’ estimate of the subcell stresses is not as
system. It contains 2626 subcells appropriately dimensioned to ccurate as the effective moduli estimates due to the absence of

approximate the circular fiber shape sufficiently well. This ceff élpling between the normal and shear stresses in the mlane

generates a square array of circular fibers in the matrix phase. —X3. The effective thermal expansion coefficients obtained from
the present theory, Table 3, also agree quite well with the results
reported by Tamma and Avila. It is remarkable that the general-
¥2 ized method of cell's estimates of the effective thermal expansion
T coefficients are even closer to the finite element results.
The agreement between the present theory’s estimates of the

1 - effective moduli and the finite element results of Sun and Vaidya
09 —— in the case of the graphite/epoxy system, Table 4, is even better
that in the preceding case for all moduli. In addition to the higher
08 fiber volume fraction for this case relative to the preceding case,
53 the material property mismatch in tlkg—x5 plane is lower, which
could explain the better agreement. However, the shear modulus
06 | ] 1N mismatch in the out-of-plane directigmoting that the graphite
05 L i fiber is transversely isotropids now higher. Despite this greater
L ] ] mismatch, the estimates &, are very close. The prediction of
0.4 the generalized method of cells f@, also compares favorably
e with both the finite element and the present theory’s results.
’ Despite the established predictive capability of the generalized
0.2 method of cells to accurately estimate the macroscopic response
of unidirectional composites in terms of both the effective moduli
B = and the thermal expansion coefficients, demonstrated above and in
0 I - — Vs a number of previous investigatiolisee the recent review paper
0 02 o4 oe a8 i by Aboudi[18] for instance, which also includes inelastic effects
Fig. 3 Volume discretization of the repeating unit cell em- its predic_tive capabi_lity of the_ Io_cal subcell stresses is not as go_od.
ployed in the analysis of a boron  /aluminum unidirectional com- As mentioned previously, this is due to the absence of coupling

posite with a fiber volume fraction of 0.47

Table 2 Comparison of predicted effective elastic moduli of a boron /aluminum unidirectional
composite (v~=0.47)

Effective Elastic Moduli E1 (GPa E, (GPa Gy, (GPa G, (GPa 120 Vo3
Present model 215.4 144.0 54.34 45.83 0.195 0.255
Sun and Vaidyd16] 215.0 144.0 57.20 45.90 0.190 0.290
Tamma and Avild 17] 214.7 144.7 54.30 45.60 0.195 0.249
Generalized method of cell42] 215.0 141.0 51.20 43.70 0.197 0.261
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Table 3 Comparison of predicted effective thermal expansion A7)

coefficients of a boron /aluminum unidirectional composite (vy
=0.47)
1
Effective Thermal Expansion Coefficientsy,; (1078/C) a,, (107%/C)
0.8
Present model 11.0 16.7
Tamma and Avilgd 17] 10.77 17.34 0.8
Generalized method of cell42] 10.91 16.94
0.7
0.6
0.5

between the normal and shear strajos stressesin the x,—x3
plane which, in turn, can be directly traced to the first-order ex- 04
pansion of the displacement field within each subcell and the man- 5
ner in which the interfacial traction continuity conditions are ap-
plied in an average sense. This produces piecewise uniform stress 02
and strain fields within each subcell as a result of which the rela- g,
tions between the macroscopic norrtiaplane shearstrains, rep-
resented by the strain concentration matrix, are related to the av- 9 02 04 05 o8 1> Y3
erage subcell normdinplane shearstrains only. As demonstrated
next, this problem has been circumvented in the present theqgryy. 4 volume discretization of the repeating unit cell em-
and in fact was the motivating factor that led to the theory'sloyed in the analysis of a glass /epoxy unidirectional compos-
development. ite with a fiber volume fraction of 0.05

To demonstrate the proposed theory’s accuracy in estimating
the local subcell stress fields, we consider the classical problem of
an isotropic circular fiber embedded in an infinite isotropic matrix ) ) ]
subjected to the uniform far-field stres$, (the so-called Eshelby Where the subscriptsand m denote fiber and matrix phases, re-
problem. The exact analytical solution to this problem is given irsPectively, and the correspondings are related to the Lame’s
compact form in terms of two sets of complex potentialandy, —constants\ and w as follows:
with each pair corresponding to the fiber and matrix phases. The A+3u

stresses in th&,—x; plane are obtained from the formulas K= N
722~ 2 Re¢’ +Rez4"+y'), In the fiber, the in-plane normal stresses and o33 are constant
03=2 Regp’ —Re(Zd" + '), while the inplane shear stregs,; vanishes. In the matrix, the
stress field is quite complex with all stress components present,
023=IM(Z¢"+ ") (67)  but approaches the uniform far-field stras, with increasing

where the prime denotes the derivative with respect to the coffistance from the fiber. These features of the exact analytical so-
p|ex variablez= X-'-iy7 and Re and Im denote the real and imagil.ut|0n to the ConSIdel’ed pl’Oblem pI’OVIde a convenient baS|S for
nary parts of the expressions within the parentheses, respectivilig validation of the present theory.

For the fiber phase, the two complex potentials are given by The discretization of the repeating unit cell for the considered
problem is shown in Fig. 4. The cell contains>80 subcells

pr=ayz, Yr=piz (68) with the fiber subcells having the same relative dimensions as
and for the matrix phase they are those in Fig. 3. Thus the approximation of the fiber shape is the
same as in the preceding case. The fiber volume fraction for this

bm=3_12 A7, P=P_3z +P_1z "+P1z. (69) repeating unit cell is 0.05 which is sufficiently small to be con-

Application of the interfacial displacement and traction continui\}gider_ed dilute, and thus appropriate for comparison with the exact
conditions, and the far-field boundary conditions gives the followz0!ution given above. The fiber elastic moduli are those of glass

ing expressions for the coefficients appearing in the above eqil¢!uded in Table 1, while the matrix is the previously employed
tions in the case of plane-strain loading {=0) epoxy. The choice of these materials produces a high elastic

moduli mismatch and thus a significant disturbance in the stress
field in the vicinity of the embedded fiber.

The results obtained from the proposed theory have been gen-
erated for an applied macroscopic strap of 0.1 percent under
the constrainte;;=0, simulating the plane strain condition em-

a :Eo_w (Kmt 1) s B Zla'wz[l-i- Mt~ Mm
g 22[2/’«f+('(f71):um]' 1272 Mm+Kme(7O

= _} w| M7 Hm = _} o e ployed in the exact analytical solution. The resulting macroscopic
a-17502 T 177092, P-sTa-1, stresso,, obtained from _the prese_nt theory{,=5.83 MPa_) was
then taken to be the uniform far-field stres$, employed in the
B,=2a,— Egm B =1 o 71) exact analytical solution. Figure 5 compares stress contours in
B R the repeating unit cell generated by the present theory with the
Table 4 Comparison of predicted effective elastic moduli of a graphite /epoxy unidirectional
composite (v=0.60)
Effective Elastic Moduli E;1 (GPa E,,(GPa Gy, (GPa G, (GPa V1o Vo3
Present model 142.9 9.61 6.09 3.10 0.252 0.350
Sun and Vaidyd16] 142.6 9.60 6.00 3.10 0.250 0.350
Generalized method of cel[42] 143.0 9.47 5.68 3.03 0.253 0.358
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Fig. 5 Comparison of the o, stress contours in the repeating Fig. 6 Comparison of the o3 stress contours in the repeating
unit cell of a glass /epoxy unidirectional composite generated unit cell of a glass /epoxy unidirectional composite generated

by the present theory (&) and the exact analytical solution  (b), by the present theory (&) and the exact analytical solution  (b),
(colorbar scale in MPa ) (colorbar scale in MPa )

shown in Fig. 6. In particular, the in-plane shear stress predicted

corresponding contours obtained from E(&7)—(71), calculated by the present theory is nearly zero within the fiber, and exhibits
in the same region as that occupied by the repeating unit ceélle same qualitative and quantitative characteristics in the matrix
Both qualitative and quantitative agreement is observed betweegion as that of the exact analytical solution, including the anti-
the present model and the exact analytical solution, despite sosyenmetric character about the unit cell's axes of symmigtigng
interaction effects due to the presence of adjacent cells which cahich the shear shear stress vanigtasl the symmetric charac-
be eliminated by further decreasing the fiber volume fraction. ber through the unit cell’s center. This is in stark contrast with the
particular, theo,, field predicted by the present model within thegeneralized method of cells which, due to the absence of coupling
fiber is nearly uniform, and the features of the stress field in theetween the normal and shear effects, predicts zero shear stress
matrix phase in the fiber’s vicinity are the same as those of tlegerywhere within the repeating unit cell for the given loading.
exact analytical solution. Similar results have been obtained fdhis, too, is a direct result of the first-order displacement repre-
the o33 stress field. In contrast, the,, stress distribution pre- sentation in the individual subcells employed by the generalized
dicted by the generalized method of celf®t shown is uniform  method of cells.
within each column of subcells along tle-direction, due to the  Finally, Fig. 7 compares the,, distributions predicted by the
first-order displacement representation within each subcell tproposed theory and the exact analytical solution along the cross
gether with the imposition of traction continuity conditions at theections that define the unit cell's material axes of symmetry, i.e.,
subcell interfaces in an average sense. Clearly, the higher-ordng the linesy,=0.5 andy;=0.5. The quantitative agreement
representation of the displacement field employed in the preséetween the two approaches is clearly evident, as is the continuity
theory accurately captures both the qualitative and quantitatiséthe normal traction component at the fiber/matrix interface in
features of the actual stress field. they;=0.5 cross sectioficoincident with the loading direction

Equally important is the agreement for thes stress field The sharpo,, discontinuity at the fiber/matrix interface in the
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12.0 ' | — the ease of the repeating unit cell's construction, which also fa-

Gy distributions in the y3 = 0.5 cross section cilitates incorporation of the proposed micromechanics approach
o Present theory into structural analysis computer codes.
10.0 1 — Eshelby solution .
8.0 4 Summary and Conclusions
G20 (MPa) A new theory for periodic multiphase materials has been pre-
6.0 sented and demonstrated to be capable of estimating with suffi-

cient accuracy both the effective moduli and local stress fields in
unidirectional composites with continuous reinforcement. The
40 | J outlined theoretical framework combines elements of the homog-
enization technique, which provides a basis for consistent ap-
proximation of the displacement field at the local level, with the
2.0 1 T higher-order theory for functionally graded materials developed
previously by the authors. The higher-order displacement field
0.0 . . . . approximation at the local level employed in the present approach
™ 0.0 02 0.4 0.6 0.8 10 provides the necessary coupling between the local normal and
inplane shear stress fields and the macroscopically applied load-

y2 ing. This coupling dramatically improves the accuracy of estimat-
(@) ing the local stress fields relative to the generalized method of
cells which is based on a first-order displacement approximation
13.0 ) ' ' ' at the local level.
6o distributions in the y, = 0.5 cross section Closed-form expressions for the effective moduli were provided
110 42 EL%%?Q;?SS%n | that are valid for microstructures characterized by repeating unit
’ o o cells with arbitrary reinforcement distributions under multiaxial
© ° macroscopic loading due to the use of periodic boundary condi-
9.0 1 ® ® T tions that follow from the homogenization approach’s framework.
(PR Thus all the effective moduli can be generated irrespective of
622 (MPa) 7.0 1 4 whether or not a repe.ating gnit cell possesses plangs of material
symmetry. The repeating unit cell's construction is simple due to
50 the employed volume discretization that produces a rectangular
) grid whose subcells are appropriately assigned different material
properties and dimensions so as to mimic a multiphase material’s
3.0 -1 1 actual microstructure. Further, the computational speed with
which effective elastic moduli and local stress fields are generated
1.0 1 . is sufficiently fast for reasonably detailed volume discretizations
of a repeating unit cell. These features of the presented theory
3 8 facilitate investigations of the impact of different materials archi-
1000 o2 oa 06 08 7o  tectures on both the macroscopic and local responses in an effi-
cient and accurate manner. They also make it straightforward to
¥ incorporate the theory into a structural analysis computer code as
(b) a subroutine.
Fig. 7 Comparison of the o, stress distributions in the  y3
=0.5 (a) and y,=0.5 (b) cross section of the repeating unit cell References
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Stress Analysis of Layered Elastic

Solids With Cracks Using the Fast

Fourier Transform and Conjugate
.a.roionsky | Gradient Techniques

L. M. Keer
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Northwestern University,
Evanston, IL 60208-3109

The fast Fourier transform (FFT) technique has recently been applied to stress analyses
of layered elastic solids, with a great deal of success. However, the existing FFT-based
methods are limited to intact solids. This paper explores the possibility of using FFT for
stress analyses of layered elastic solids containing cracks. A new numerical approach is
developed by combining three-dimensional FFT with the theory of periodic eigenstrain
and the conjugate gradient method. The new method is primarily designed for analyzing
complex three-dimensional crack patterns in layered solids, such as those produced in
thin protective coatings by roughness-induced contact stresses. The method should be
particularly advantageous for studying crack propagation in coatings, as it does not
require remeshing when the crack shape changes. Numerical examples illustrating advan-
tages as well as limitations of the method are presented. Some unexpected results that
were obtained for multiple cracks in a thin coating are discussed.

[DOI: 10.1115/1.1381394

1 Introduction of the main functions of tribological coatings is substrate protec-
Protective coatings have been widely used in many tribologictI Saﬁgr?'snst:]é%%%?i?]esfﬁilgsr?gssdi:ggﬁqse;é;grig?Lrgc;reéti'gl rrzr;r?ng
applications, including cutting tools, engine components, an ’ 9 P P 9

magnetic data storage, and their importance can only be expec?e
to increase in the near futur§l,2]). To understand the mecha-
nisms underlying coating performance in various applications,

roughness-induced stress spikgs)).
owever, even the most accurate prediction of roughness-
iﬂduced contact stresses in a coated system does not answer all the

is essential to analyze stresses generated in the coated sysc?g%atlons. Even the most uniform coatings contain pre-existing
. . icrocracks, and new cracks can be initiated under severe contact

under contact load as well as the coating material response to suci ...

stresses conditions. Under repeated contact load, cracks can propagate

. . ough coating thickness, which can ultimately lead to coating
A remarkable breakthrough in the stress analysis of layer g{nure ([14,15). To understand how coatings behave under severe

elastic solids has been achieved in the last several years. It VS ot conditions and how their strenath and toughness are af-
brought about by the application of the fast Fourier transfor 9 9

(FFT) technique to contact mechanichi and Farri§3], Polonsky ected by their microstructure, it is necessary to perform fracture
. ’ mechanics analyses of layered solids under contact loading. Un-
et al. [4], Nogi and Kato[5], and Polonsky and Ked6)). The étunately, the highly efficient FFT-based methods discussed

FFT-based approach offers two important advantages. First, {%ove are not directly applicable to such problems. For cracked
elastic response functions of the layered solid are only requirede} - - Y app . P ' .
lids, the elastic response functions are generally unavailable

the wave number domain, where closed-form analytical expressqen ' the wave number domain. However. knowledae of these
sions for such functions are available. Conversely, in the classi(?éll nse functions i ntial f.r the m ’th d ﬁl At
approaches using basis functiof@hen and Eng€f7]) or influ- esponse functions I essential for the method applic

ici i [5,6]).
ence coefficient¢Chiu and Hartnet{8], Cole and Sayle$a), There is a different way of applying the FFT technique to elas-

inverse Fourier or Hankel transforms need to be computed g solids with imperfections. Moulinec and Suquas,17 de-

numerical integration, which is a very time-consuming operation.” - . A : ; S
Second, the surface deflections produced by a given contact pr%q_lbed composite material as infinite elastic media containing pe-

sure distribution can be computed in justNOiog N) operations riodic distributions of eigenstrains and used FFT for calculating
by using FFT, wher& is the number of nodes in the surface grij

used to solve the problem. When the same operation is perfor
by the conventional direct convolution meth@dubo et al.[10],
Francis[11], and Ren and LeEl2]), its computational cost is O
(N?). In the case of rough contact problems, whare 10° or
evenN~10° commonly arise(see[13] and references thergin

he resulting stress fields. This is possible because elastic response
Hchtions of an infinite homogeneous medium are readily avail-
able in both the space and wave number of domains. Hermann
et al.[18] applied a similar approach to stress analyses of solids
containing periodic systems of inclusions or voids. They also in-
dicated how the same method can be applied to cracked solids.

. However, the above approach is not directly applicable to contact
the speed advantage .Of FFT becomes _cruua}l. _R_ough cont é(i,{chanics problems because contacting solids are essentially non-
analyses of layered solids have great practical significance, as %@ﬁodic in the direction normal to their surfaces

A number of workers have applied the finite element method to

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF : i ; -
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- modeling contact-induced coating fractufeg., Tian and Saka

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 21[19], Eberhar_dt_ and Kinﬁ_2(_)], and Souza et a[21]). The_re is no

2000; final revision, Mar. 13, 2001. Associate Editor: D. Kouris. Discussion on theonceptual difficulty for finite element method application to such

paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departmentp;fouems_ However, finite element method does require bulk dis-
ill !

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi . . . . .
be accepted until four months after final publication of the paper itself in the ASMEretlzatlon' and its numerical complexity is betweer'\@( and O

JOURNAL OF APPLIED MECHANICS. (N®), whereN is the number of elements. Consequently, compu-
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tation times can become exceedingly long in three-dimensionafinement is left to future work. Furthermore, it will be assumed
crack problems involving multiple cracks and/or complex cracfor simplicity that all of the three-dimensional crack segments lie
shapes. in either vertical or horizontal planes. The cracks are driven by
Lin and Keer[22,23 used the boundary element method tgubsurface stresses generated when the cracked solid comes into
analyze a vertical three-dimensional crack lying in a multilayefontact with a counterpart, which is shown in Fig. 1 as a jagged
solid. Kuo and Keef24] extended the analysis to slant cracks. Afiorm located above th&axis. The counterpart can also be lay-
important advantage of the boundary element method is that omlsed, but it contains no cracks. One or both of the solids can have
the crack faces need to be discretized. However, computationrgfigh surfaces with known topographies. In addition to the con-
the corresponding influence coefficients, which involves evalugact stresses, uniform in-plain stresses, such as residual stresses,
tion of inverse Hankel transforms, turned out to be a costly opnay be present in the cracked layer. The Cartesian coordinate
eration even for relatively small numbers of elements. Furthesystem k,y,z) used in the subsequent analysis is also shown in
more, system assembly in the boundary element method is=gy. 1.
rather nontrivial task, which is not easily automated. Conse-|t js not obvious how to apply FFT to cracked elastic solids,
quently, computer code modification is often required to considggpecially in situations where cracks lie in different planes or have
a different crack geometry. o _ kinks. The basic approach explored in this paper is to replace the
The present work explores the possibility of applying the FF{acked layer by an intact elastic medium with an appropriate
technique to contact stress analyses of elastic solids with |°Ca"7§aenstrain distribution, and then apply FFT to the latter. “Eigen-

Fhree-dimensional inhomogeneities, such as crack;. It is tama@ir‘ain" is a generic term encompassing various kinds of inelastic
ing to try to take advantage of the ®{ogN) complexity of FFT - gyraing in solids, such as thermal expansion, phase transformation

when dealing with typically complex geometries arising in SUCQy5ing or plastic straindlura[25], Chapter L Cracks in elastic
problems. A more immediate goal of this work is to develop @igs can also be modeled as eigenstrain distributi¢i2s)),
numerical tool suitable for analyzing complex crack patterns a”é‘hapter 5

Q?es”s],e:O?I'tc?dacsr?i:/eemtshess%bjgggs ‘t; tﬁ?gg-rgi?ri?asr;ls?gﬁglegF(‘:I'Ogtla% illustrate this point, consider a two-dimensional crack nor-
rithm is combined with the eigenstrain theofsimilarly to the I to thezdirection and subjected to a tensiMode | loading.

approach of Moulinec and Suqueand the conjugate radientln the loaded state, the crack faces are open, while the normal
PP q Jug 9 q%Ees&fuvanishes along the crack line. The corresponding crack-

(CO) mgthod. .TO account_for the es_sentlally _nonperlodlq nature ening displacement distribution will be denoted Aw,(x).
contacting solids, a special correction term is used, which is cofj:

structed Using in-plain two-dimensional EET. The resulting n \ext, imagine that the crack cavity is filled with the material of
g In-p : 9 L{hle cracked solid, and the continuity of the solid is restored. If the

merical approach is described in this paper, followed by numerica e . ) S
examples. Application of the new approach to studying the effe%rt'ack is filled completely, but without forcing any material in, the

of coasting microstructure on crack propagation in thin Coatin%%aterlal inside the crack will be stress-free. Hence, the stress field

under contact fatigue conditions will be presented in a compani isting in the solid will not be affected by the aboye procedure.
paper. owever, exactly the same stress state can be achieved by assum-

ing that the solid has been intact all the time and that the extra
2 Numerical Techniques ma_terial has bee_n prqdyced by s_tress-free expansion of an ir_]fini-
) ) ) ) . tesimally thin strip within the solid. Therefore, the crack in its
The present analysis deals with layered elastic solids containiggen state can be equivalently replaced by an eigenstate distribu-
contact-induced three-dimensional cracks. The basic problem ggp of the formg, {x) = 8(z) Au,(x), whered(z) is Dirac’s delay
ometry is shown schematically in Fig. 1. The layered solid cofignction. The same reasoning can be applied to arbitrary system of
sists of a semi-infinite elastic substrate and an arbitrary numberQgcks in both two-dimensional and three-dimensional cases, in-
perfectly _bonded elastlcally d|§5|mllar layers. The topmost 'ay%fuding mixed-mode and nonplanar cracks. The main advantage
of the solid can contain an arbitrary number of cracks. Cracks 8gmodeling cracks by eigenstrain distributions is that the cracked
indicated in Fig. 1 by bold black lines located below thexis. gqjiq geometry, which is often complex, is replaced by a much
Although Fig. 1 iny shpws a cross section of .such' a crack pler geometry of the corresponding intact solid.
solid, the cracks in the figure have finite dimensions in all three pq the crack-opening displacement distribution is not known in

directi()lns, ie., (tjhf?y are tlhree-dimengiona! c:jacl;s. Fflanall(r. Ckraiavance in crack problems, the equivalent eigenstrain distribution
areas lying In different planes can be joined, forming kinkeg 4154 injtially unknown. It needs to be determined from the con-
three-dimensional cracks. The rest of the layered solid is assurwﬁtn that the crack faces be free of traction stresses. If Green's
to remain intact. This special case is of a considerable practiggy, (ions in closed form are available for the solid in its intact
significance, since roughne_ss-_lnduced coating fracture is likely fhte, the eigenstrain-induced stresses can be represented as an
start from the surface. In principle, the method can be extendediggel '

ks located i ¥ dlor in th bstrate. but egral over the crack area, thus obtaining a boundary integral
cracks located in several layers andjor in the substrate, but SUCQgation with respect to the crack-opening displacement. Discreti-

zation of this boundary integral equation leads to a boundary el-
ement method formulation suitable for three-dimensional crack
analyses([26—28). However, Green’s functions in closed form

Counterpart P&, ) are unavailable for layered solids. Therefore, a different approach
\m . to solving crack-related eigenstrain problems is proposed here.
The equivalent eigenstrain distribution is determined by iteration.

approximation to the eigenstrain are computed with the aid of
FFT. The stress computation procedure is described next.
\ To enable the use of FFT, the cracked portion of the topmost

layer is discretized by using a uniformly spaced rectangular grid
Substrate aligned with the layer boundari€Big. 2). The tensor components

of all elastic fields are stored as discrete arrays of nodal values. In

3{ L LI I_l * C During each iteration step, the stresses generated by the current
o Top lyer h —» o

V‘Z . . . .
particular, each eigenstrain compon@jt(x,y,z) is represented
Fig. 1 Layered solid containing contact-induced cracks by a discrete array of nodal valueg(l,m,n). Here indices in
(shown as thick black lines ). Counterpart roughness is exag- parentheses refer to node positions in the three-dimensional grid,
gerated. The y-direction is normal to the picture plane. while subscript indices denote tensor components in the axes
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_ R =0 and oj;=—§;;. Using Eq.(3), the displacement and stress
; ; ; ; ; ° g ; i amplitudes are calculated for all terms in Eg), thus obtaining
o the discrete Fourier transforms of these fields. Discrete nodal ar-
g co> o 2 2 g © o rays corresponding to the periodic displacement and stress fields
© o generated by the eigenstra"jﬂ(x) are then obtained by applying
0O 0 0 ol 0o 0 o0 ; ; ; .
the inverse three-dimensional FFT:
0O 0O 0 0 O 0 0 3 A .
0o o0 o0o0|l00oO0oO0 U=FFT (), i=xy.,z (4a)
v o =FFT Y(0y), 1,j=xy,z. (4b)
z
Algorithms for inverse FFT are very similar to, and as fast as
Fig. 2 Discretization of the cracked layer. Grid nodes are those for direct FFT.
shown as circles. Nodes carrying eigenstrain are filled. Generally, the eigenstrain-induced elastic fields obtained from

Eq. (4) will satisfy neither the free surface conditionszat 0, nor

the continuity conditions at=h, whereh is the layer thickness.
shown in Fig. 1. In what follows, the node indices will often pel0 satisfy these conditions, and thus obtain a complete solution
omitted for brevity. As discussed above, we assume that all of tf the layer with eigenstrain, two additional solutions are super-
crack segments are either parallel or normal to the surface. fAPosed on the periodic solutioni(, ;). One of them corre-
addition, the crack segments will be assumed to lie in plangégonds to a surface traction distributibhacting on the surface of
containing grid nodes. Thug;; =0 for all nodes that do not lie the elastic half-space>0, and the other to a traction distribution
within a crack. The above assumptions can be relaxed by usingacting on the surface of the elastic half-spaseh. Both of
interpolation between grid nodes. these half-spaces are homogeneous and have the same elastic

For each nodal arrag;;, the corresponding discrete Fouriermoduli as the layer. Note that the two additional solutions are not

transform is computed by applying a three-dimensional FFIssociated with any eigenstrain; they are conventional elasticity
algorithm: solutions produced by surface loads. The tractiohendt™ are
initially unknown. They are determined with the aid of two-

9ij=FFT(gy), TLi=xy.z (@) gimensional FFT applied in the andy-directions. First, the dis-
Based on the obtained discrete transformat@psthe following crete solutions; ,Eij) is evaluated on the layer boundaries: thus
spectral representation of the eigenstrain is considered: obtaining the following two-dimensional nodal arrays?
My—1 My—1 M,—1 =7,(1,m0), T=5,(,mM,—1), and W=T,(l,mM,—1).
0= > > > G mmexpli&l,mn)-x), Their two-dimensional transforms, denoted y ', and &7,
i=0 m=0 n=0 respectively, are then obtained by using two-dimensional FFT.

. As the problem is linear, the spectral components can be analyzed
jk=xy,z. @ independently. Using the matrix notation, the boundary condi-

Herex is the coordinate vectol, , My, andM, are the numbers tions for each pair of wave numbers,(£,) can be expressed as

of grid nodes in the three directionisis the imaginary unity, and follows:

E(I,m,n)=(&(1),&,(m),&,(n)) is the wave vector. The compo- S+ —0h— L 50 .
nents ofé (i.ex., theywaveznumbe}are given by AT =05 (5a)
&) =2mk'I(a;M;), i=x,y,z UNOtt + UMt + GN= USSR TOT + £ + ). (5b)
I 1 1/ 1 Y14

where a, is the grid spacing in the direction k'=k for 0 Here the symboll denotes traction responses dodlenotes dis-
<M./2 andk’ = M. — k for M. /2<K<M. placement responses. The matrid@¥ and U™ pertain to the
= Wljl&, = Wi i it : H ho ho

Unlike the original eigenstrain distributios;;(x), which van- elastic half-space<h, the matriceS™™ andU™"to the half-space
ishes outside the grid volumg,; () is infinite and periodic in all Z<0. andU>"to the multilayered substrate to which the top layer
directions. Furthermore, while; (x) is localized in the crack 1S bonded. Note that qll these matrixes are fqnctlons of the wave
planes;;(x) is a continuous oscillating function distributed Ovepumberi €x,£,). Solving the system of matrix Ed5) for the
the grid volume. HoweveR;;(x) vanishes at all grid nodes lying vectorst™ andt™ yields

outside the cracks, has a relatively low amplitude between such it = _Tohf-_fo0 (6a)
nodes, and has relatively high and narrow peaks corresponding to '
the crack areas. Thug;(x) does approximate;;(x) within the t~=D LU - " BI?), (6b)
grid volume. It can be said that in the present model, a crack ha
a small, but finite thicknes¢éon the order of the grid spacing "W"€r€
When the grid spacings are small in comparison to the crack di- D=Uuhh—ysuby gTON (7a)
mensions, the approximation gf;(x) by@ij(x) will be accurate.

Next, imagine that the periodic eigenstrai)(x) lies in an B=Usuerno—yho, (7o)

infinite elastic medium having the same elastic moduli as ﬂ}-eor the uniform term(¢=0), one simply obtaind*=—{° and

cracked layer. Since the problem is linear, the terms in the rig L':O. The stress amplitudes generated by the traciibrandi-

hand side of Eq(2) can be analyzed independently. The stress i . denthz b d as foll .
and displacements corresponding to each spectral compon% f given deptiz can be expressed as follows:

0k explx- £(1,m,n))will also be periodic, with the wave vectdr ot (2)=S" ()", o (2)=S (2)t". (8)
Their amplitudes will be given by the following expressions oy . o .
(Mura[29], and Mura[25], Chapter 1: Hereo" ando~ are six-dimensional stress vectors, wiiié(z)
. o andS™ (z) are the &3 subsurface stress response matrices of the
uj=—iKjsué (33)  half-spaceg=0 andz<h, respectively.
O'ij:CijkleklzcijklKlznj{smnglén_sij1 (30) For an elastically isotropic material, the half-space response

matrices,U, T, andS appearing in Eq95)—(8) are easy to calcu-
wheres;; = Cjj 0 . Kik=Cija £ ) & are the elastic strains, andlate by using periodic Papkovich-Neuber potentials. They can also
Cijw are the elastic constantthe stiffness matrix The above be obtained as a special case from the layer responses presented
formulas apply to any+0. For £=0, it can be shown thal, by Chen[30]. The multilayer substrate responidé"®is computed
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by using the well-known propagator matrix techniq@id1,32). c,=1 is the node lies within a crack normal to tkelirection, and
The principal recursive relation of this procedure can be expressgg-=0 otherwise. The numbers, and c, are defined similarly.

as follows: Then, the problem can be formulated as follows:

UM =y%4 (yoh_yoorohp-1g, (9) gi=0 (c¢i=1,9¢;;>0, no summation (13a)
where the matrice® and B are given by Eq.(7) with US‘® gi<0 (¢=1,0;=0, no summation (13b)
=y, L

The additional stress fields generated by the traction distribu- 0;;j=0 (Gi=Li#]); (130)
tion t* andt™ are computed successively for all horizontal sec- g;=0 (no summation (13d)
tions of the three-dimensional grid. For sectignthe stress am-
plitudes corresponding to all pairs of in-plane wave numbers gij=0 (c=¢;=0). (13¢)

(£x.¢,) are computed from Ed8) with z=na,, wherea, is the 1,5 4)5ye equations and inequalities apply to every node in the

g_rld spacing In thez—dlrectlon (see Fig. 2 The Inverse two- 4 Equations(13a) and (13c) require that the three traction
dm_wensnona_l FF‘I_’ is then applleq to th_e resulting stress transfornif.acses vanish at the faces of an open crack. Equétian)
This operation yields the two-dimensional stress argy/S(.m)  means that a closed crack can support a compressive stress acting
and o} (I,m) corresponding to the tractioris andt™, respec- across its faces, but no tensile stress is allowed. Equétiad)
tively. The total eigenstrain-induced strea% in the grid sectiom stipulates that crack faces cannot overlap. Thus, the present model
is obtained by adding these two-dimensional arrays to the periodicdesigned to treat the possibility of contact between crack faces
stress?rij : in a consistent way. This feature is essential for realistic modeling
~ _ of contact-induced cracks. On the other hand, @&c) implies
afj (lm,n) =G (1m,n) + of" (I, m) + o7 (1,m), that there is no friction between the faces of a closed crack. Al-
0<I<M,, 0<m<M,. (10) thpugh this assumptio_n is o_nIy realisti_c for _surface crackg in Iu_-
bricated contact situations, it greatly simplifies the analysis. This
The above procedure is performed successively for all gird segssumption may be relaxed in the future versions of the method.
tions (0<sn<M,). The resulting stress distributioaﬁ- corre- Finally, Eq.(13e) implies that cracks are the only source of eigen-
sponds to the given eigenstrady (to the discretization errprAt  strain in the problem.
the same time, it satisfies both the free surface conditiors at The system of equations and inequaliti@$) is solved by it-
=0 and the interface continuity conditionszt h. eration, until Eq.(13a) and (13c) are satisfied to the desired ac-
The stress fieldsf; is still periodic in thex andy-dreictions. In  curacy. Equation&l3b), (13d), and(13e) are enforced at all times.
principle, additional terms could be used to reduce the associatetf iteration scheme used here is based on the CG method and is
periodicity error. However, such a refinement is left for futur&ery similar to the one used in our rough contact solfég]).
studies. Note that the present method is primarily intended f&nce a very detailed description of the scheme was included in
analyses of roughness-induced cracks in protective coatings.(I43]), the details will be omitted here. The main differences be-
such applications, multiple cracks randomly distributed over t#/een the two schemes are that in the present case, iteration is
large area are likely to arise. Hence, assuming in-plane periodicRgrformed with respect to the eigenstrain instead of the contact
of the problem is about as good an approximation as consideripggssure, the solution residual is based on the crack face tractions
isolated crack systems. instead of the contact gap, and the load balancing procedure is not
To obtain the total stress field in the layer, the contact-inducégquired. During each iteration step, the total stri@gds recom-
stresses need to be computed. To a first approximation, the inf4ted for the current approximation ¢ by using Eqs(1)—(12).
action between the cracks and the contact can be neglected. TRi§e end of the solution procedure, the global stress field in the
leads to a conventional rough contact problem for a pair of intagtacked layer is obtained, together with the eigenstrain distribu-
layered solids with given surface topographies, which is solved ign. The crack-opening displacement distributions for cracks in
using the FFT and CG techniques. §6el3] for algorithm de- the layer can be approximated from the calculated eigenstrains as
tails. In light of the above discussion, the periodicity correctiofpllows:
procedure of Polonsky and Kelg] need not be applied here. The oA (= . 1 ;
surface deflection responses of layered solids, which are required Au=giay  (I=xy.z ¢=1; no summation (14)
for contact problem solution, are calculated with the aid of Ediderea; is the grid spacing in the directignThe above formula is
(9). Having computed the contact pressure distributigr,y), Vvalid for all grid nodes except those at which two or more cracks
and assuming proportional traction, the contact traction compigtersect.

nentst{ are obtained for each surface node as ~ Numerical experimentation with the new computational method
. . . indicated that the convergence rate of the iteration procedure
tye=—fp, t;=0, t;=-p, (11) strongly depends on the problem geometry, particularly on the

wheref is the traction coefficient is the nodal pressure, and thelocation of cracks with respect to the surface and the interface. For

frictional force is assumed to act in the negativeirection. The internal cracks, convergence is normally very rapid. On the other

subsurface stress field generated by these contact tractions is 2 d sglrface-tbreakfing ctrhacks p(;esent?d cofns_idera?le_ challenge.
computed using Eqs6)—(9) with P~ — ¢, i'—0. andd—0. e problem stems from the rapid variation of eigenstrains across

. . . . the crack plane, and from the fact that the eigenstrain-induced
The resulting contact stress field will be denoteddfy. Finally,  gyresses and the stress fields added to satisfy the boundary condi-
the total stress in the cracked layer is obtained as tions are constructed from different fundamental solutions. How-
7y :Uiej +<Ti°j +0_iuj ’ (12) ever,_th_ig difficulty has_ been overcome by introducing !ong, nar-
row fictitious cracks lying in the free surface and running along
Whereai“j is the uniform stress field existing in the lay@such as the mouths of the surface-breaking cracks. The fictitious crack
a residual stress field only needs to be three grid spacings wide to achieve acceptable
To solve the crack problem, it is necessary to find such amnvergence rates. Since the fictitious crack is so narrow, it does
eigenstrain distributiony;; that the corresponding total stresg  not significantly affect the contact-induced stress field. The solu-
satisfies certain conditions on the crack faces. To obtain a concige accuracy in the near vicinity of the crack mouth can be fur-
and efficient discrete formulation for the crack problem, a statdiser improved by extending both the grid and the surface-breaking
array describing the crack geometry is constructed. Each nodeciack beyond the surface. This modification, however, is not
the grid is assigned three numbertsg; c,, andc,. By definition, nearly as important as the previous one. Since rapid convergence
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cannot be taken for granted in the present model, the iteratieract analytical solution. It is seen from Fig. 3 that the global
scheme was modified to restart the conjugate gradient algoritlunack-opening displacement behavior was reproduced reasonably
after every ten iteration steps. This measure ensures that the caccurately, despite the relatively coarse discretizatidtia(
jugate direction does not become corrupted by numerical errerl6). The average relative error of the numerical solution was

even in the cases with slow convergence. about three percent. Such level of accuracy should suffice for
] ] most practical purposes. The main sources of numerical error in
3 Results and Discussion the present method are the discretization error and the periodicity

The numerical algorithms described above were implement8f©r. both of which stem from the use of finite Fourier se(gee
the Standard Template LibrasTL). The FFT implementation crack geometries, _such as the p_enr]y-shaped crack. As discussed
was based on a function borrowed from Takuya Ooura’s FFAPove, roughness-induced cracking in coatings can be modeled by
package, which is freely distributed over the Internet. The numeReriodic systems of cracks. The discretization error, however, can
cal examples described below were run on a personal compugly be reduced by using finer grids, which would require more
with a 450 MHz CPU and 256 MB RAM. powerful computers. Thus, the present method is best suited for

The new numerical method was first applied to subsurfagéuations where a highly accurate analysis is not justifeed.,
stress computation for a pair of crack-free layered solids havigie to uncertainty in the input paramefefsut even an approxi-
rough surfaces and engaged in contact with friction. The resufzate solution is difficult to obtain because of the complex prob-
were compared to the output of a contact stress analysis progr&m geometry. Roughness-induced cracking in tribological coat-
previously developed by the authdf$§]). The stress distributions ings certainly appears to fall into this category.
computed by the two computer codes were identical to the round-One of the main reasons for the numbers of nodes being so
off error. Thus, the procedure used to enforce the boundary cdarge in the present method is that the application of FFT neces-
dition (Eqgs. (6)—(10)) was verified. sitates the use of uniformly spaced grids. Hence, grid nodes can-

To check the basic eigenstrain analyfis). (1)—(4)) and the not be condensed along the crack front, as is commonly done in
iteration scheme, the new method was applied to a penny-shafiaite element method models. On the other hand, the simplicity of
crack lying in an infinite elastic medium. This geometry was ola uniform rectangular grid is a major advantage, as it makes prob-
tained by considering a counterpart perfectly bonded to the sigm discretization a trivial step. This can be contrasted to the finite
face, and setting the elastic moduli of the layer, the substrate, asidment method, where mesh generation is one of the most diffi-
the counterpart to the same values. The crack was loaded byguit steps in the analysis and typically requires the use of sophis-
uniform tensile stress. The problem was solved on axIP38 ticated software. The present method is especially advantageous
X 32 grid with equal spacinga in the three directions. The crackfor modeling propagating cracks, since successive crack geom-
was normal to the-direction and was centered with respect to thetries are analyzed on the same grid and no remeshing is required.
grid. The crack radius was set R=16a, i.e. the grid length and Compurtation results for three-dimensional crack propagation in
width were four times greater than the crack diameter. Such gpatings with various microstructures will be reported in a com-
extended grid was used to reduce the periodicity error. The refganion paper.
tive accuracy goal for the iteration scheme was set to 2.5|t is also seen from Fig. 3 that the numerical solution signifi-
X104, cantly deviates from the exact one at the nodes lying next to the

The iteration process converged quite rapidly: Only 15 iteratiagrack front. This is to be expected, since the crack front nodes are
steps were required to compute the 2436 unknown eigenstraifts treated in any special way in the present method. Thus, to
arising in this example to the above accuracy level. The corrextract a stress intensity factor from the near-tip elastic fields, the
sponding CPU time was 0.8 hrs, which is a remarkably short tingymain integral methodvioran and Shilf33]) would have to be
for such a large-scale numerical mod&l~5x10°, about 3 used. Such a procedure has not yet been implemented. However,
X 10P nodal stress valugsNote that the present method calculatesomputation of the absolute value of the stress intensity factor is
the global stress field in the cracked layer. That is, all1®° not very useful in the case of protective coatings, and more insight
nodal stresses were computed during each iteration step. The sy be gained frontomparativecrack analyses. Such analyses
of three-dimensional FFT in the present algorithm was essenti@n be used to shed light on the effect of various system param-
for achieving such a remarkably high computation speed. eters, including the coating microstructure, on the coating tough-

The obtained distribution of the Mode | crack-opening displacatess and fatigue resistance. The present method is suitable for
mentAu, along a crack radius is shown in Fig. 3 together with theuch analyses because the near-tip fields, although deviating from
the exact solution, exhibit correct scaling with the global stress
field and hence with the load and the crack geometry.

To illustrate this point, the method was applied to the following
1Tt pair of two-dimensional problems: a Griffith crack lying in an
infinite medium, and an edge crack normal to the free surface of a
homogeneous half-plane. The Griffith crack was twice as long as
the edge crack. The cracks were subjected to a uniform tensile
stress of the same magnitude. The stress intensity factor ratio for
these two cases is known to be 1.12, with accuracy better than one
percent([34]). Our computations yielded the following results:
1.115 for the ratio of the crack-opening displacement values just
inside the crack, and 1.107 for the ratio of the stress values just
outside the crack. The corresponding relative error values are
about 0.5 percent and about 1 percent, respectively. Thus, the
near-tip elastic fields computed by the present method can be used
with confidence for comparative analyses of cracks.

Next, the new computational tool was used to study the shield-
ing effect of multiple cracks distributed around the front of a
Fig. 3 Crack-opening displacement distribution along a crack larger crack in a thin protective coating. The problem geometry is
radius for a penny-shaped crack: numerical solution (dia- shown in Fig. 4. The analyzed solid consisted of a thin coating
monds ) and analytical solution  (solid line ) layer (h=4 um) on a homogeneous elastic substrate. The elastic
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moduli were chosen as followE:=450 GPay=0.2 for the layer,
andE=210 GPa,»=0.28 for the substrate, wheiis Young’s >
modulus andv is Poisson’s ratio. This set of elastic moduli ap-
proximately corresponds to the TiN/steel system. The main crack

in the coating was a semi-circular edge crack normal to the sur- <
face and having a radius of2m. On each side of the main crack

tip, a pair of secondary cracks was locatédg. 4). The four 7

secondary cracks were circular in shape viRth 1 um, and were

parallel to the main crack plane. The spacing between them waki@: 6 Distribution of the shear stress o, in the main crack

um. Two types of loading were considered: Mode | loading b lane for contact loading: single crack case (a) and multiple
uniform tensile stress, and asperity contact loading. In the lat F’Ck case (b)

case, contact stresses were generated by a single asperity contact

located on one side of the main crack. The contact area was a

2.7-um-diameter circle tangential to the crack mouth. The asper- o

ity contact pressure was almost uniform over the contact are di€>Pa and contact friction was neglected. For each of the two

to plastic yielding of the counterpart. The yield pressure was set/@ding types, computations were performed both with and with-
out secondary cracks. Thus, a total of four cases were considered.

All four problems were solved on the same>&84x64 grid
with equal spacings in all direction@€0.1 um). Only a few
lines in the input parameter file had to be modified when
switching from one case to the next, which shows the convenience
of the new method. The relative accuracy goal was again set to
2.5x10 . In each case, the accuracy goal was attained after
no more than 35 iteration steps, and the maximum CPU time was
0.7 hrs.

The calculated stress distributions in the plane of the main
crack are shown in Figs. 5 and 6. For uniform tensile loadkig.

5), the component,,, which is the normal stress acting across
the stress plane, is shown. For contact loadifig. 6), the crack
faces are closed by the compressive contact stresses, so that the
crack is only loaded in she@aModes Il and Il). In this case, the
componento,,, which is dominant in the central portion of the
crack, is plotted. The stress plots appear jagged because the data
are defined on a rectangular grid, while the crack front is semi-
circular. Hence, the nodes nearest to the front and carrying the
highest stresses lie at different distances from the front. This ef-
fect, however, does not affect the present comparative analysis, as
the main crack has the same shape in all cases.

For tensile loading, stress concentration along the central por-
tion of the main crack front is suppressed conspicuously when the
secondary cracks are presdof. Figs. 5a) and §b)). For ex-
ample, the stress acting at the crack front midpoint is reduced by
a factor of almost five. These results are consistent with the clas-
sical concept of microcrack shielding, which is believed to be an
important toughening mechanism in ceramic matefiab)).

Fig. 5 Distribution of the normal stress @, in the main crack In the case of contact loading, however, the shielding effect of
plane for tensile loading; single crack case  (a) and multiple ~ Secondary cracks is barely noticeatité Figs. §a) and @b)). The
crack cases (b) stress at the crack front midpoint is only lowered by about 15
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percent in the presence of secondary cracks. The present results Contact of Three-Dimensional Rough Surface,” Wi, pp. 239-256.
indicate that the microcrack shielding effect is not nearly as strong? Ren, N, and Lee S €, 1993 ‘Conact Simuation T‘?:igé‘i‘;e")'”;ggs'ona'
for contact-induced cracks as it is for conventional cracks in struc- 601_9 g 9 ’ ’ PR 5317
ture, which are typically produced by tensildode ) load. This  [13] Polonsky, I. A., and Keer, L. M., 1999, “A Numerical Method for Solving
result is rather unexpected. There appears to be no intuitive expla- Rough Contact'ProbIemslBased on the Multi-Level Multi-Summation and
nation for such a marked difference in the magnitude of crack ti A %Z”’éﬂgeatﬁ Gggl';fgl;recch”'\‘}gsjgm’eis];\ F’PI-_ ezolg;;li- Rohde. S, L. and
Shleldl.ng for the two |oading types, as the crack geometry was t . Ma?the\;vs, A 1997 “étud}es of the 'Ilrib;:)loéicalyand l\’/Ie(':hanicaI I’Dro.per.t‘ies of
same in both cases. The above example demonstrates the potential | aminated crc-siC Coatings Produced by rf and dc Sputtering,” Tribol. Int.,
value of comparative numerical analyses for complex crack pat- 30, pp. 845-856.

terns and/or nontrivial |oading types. [15] Polonsky, I. A., Chang, T. P, Keer, L. M., and Sproul, W. D., 1998, “A Study
of Rolling Contact Fatigue of Bearing Steel Coated With PVD TiN Films:

: Coating Response to Cyclic Contact Stress and Physical Mechanisms Under-
4 Conclusion lying Coating Effect on the Fatigue Life,” Wea215, pp. 191-204.

Cracks in layered elastic solids can be analyzed numerically 696] Moulinec, H., and Suquet, P., 1994, “A Fast Numerical Method for Computing

i FRpH i ; f ; : ; the Linear and Nonlinear Mechanical Properties of Composites,” C. R. Acad.
using t.he '[h(_?Ofy of periodic e_lgenstralns_ in Comb.matlon with Sci., Ser. II: Mec., Phys., Chim., Sci. Terre UniveB4,8 No. 2, pp. 1417-
three-dimensional FFT and conjugate gradient techniques. The re- {453
sulting numerical approach is fast and easy to use. Although the7] Moulinec, H., and Suquet, P., 1998, “A Numerical Method for Computing the
method is sufficiently accurate for most practical purposes, high Overall Response of Nonlinear Composites with Complex Microstructures”
accuracy is difficult to achieve with this approach. The method i . Sgwr’:]:thnMeKthgdSMAurﬁzlr' '\\/"vei*" iﬁ?ﬁif&fﬁ?“iggg Linear and Elastic
best suited for comparat!ve analyses (.)f comp]ex crack patterns, Plastic FréctureyMechaynics Révisited by use Yof I’:ourie; Transforms—Theory
_such as those produced in thin protective coatings by (oughness- and Application,” Comput. Mater. Sci16, pp. 186—196.
induced contact stresses. Numerical results obtained with the ngwg] Tian, H., and Saka, N. J., 1992, “Finite-Element Analysis of Interface Crack-
method for multiple cracks in a thin coating indicate that for  ing in Sliding Contacts,” Wearl55 pp. 163-182.

cracks driven by contact stresses, the microcrack shielding effel@ Eberhardt, A. W., and Kim, B. S., 1998, *Crack Face Friction Effects on Mode
Il Stress Intensities for a Surface-Cracked Coating in Two-Dimensional Roll-

is much weaker than it is for the conventional Mode | loading. ing Contact,” Tribol. Trans.41, pp. 35-42.
[21] Souza, R. M., Mustoe, G. G. W., and Moore, J. J., 1999, “Finite-Element

Modeling of the Stresses and Fracture During the Indentation of Hard Elastic
ACknOW|edgment Films on Elastic-Plastic Aluminum Substrates,” Thin Solid Filn356, pp.
The financial support of NSF is gratefully acknowledged. 303-310.
[22] Lin, W., and Keer, L. M., 1989, “Analysis of a Vertical Crack in a Multilay-
ered Medium,” ASME J. Appl. Mech .56, pp. 63—69.
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On Plastic Collapse of Media With
Random Yield Strength

A. P.-D. Ku'

This paper concerns the plastic collapse of an elastic/perfectly plastic medium with ran-
R. P. Nordgren domly variable yield strength under a fixed load. The yield strength is represented by a
Fellow ASME Gaussian random field of known statistical properties. Using the theorems of limit analy-
sis and the methods of reliability theory, algorithms are developed for the computation of
Department of Civil Engineering, upper and lower bounds on the probability of plastic collapse. By varying the magnitude
Rice University, of the fixed load, bounds on the probability distribution function for the collapse load can
Houston, TX 77005 be computed. Results are given for uniform pressure applied to a rectangular region of the
surface of an elastic/plastic half-space. For the corresponding plane problem, results for
the classical Hill and Prandtl failure mechanisms are compared. Three-dimensional re-
sults are found to differ significantly from those of the plane problem. Comparison is
made with results of a previous approximate method for three-dimensional problems.

[DOI: 10.1115/1.1388011

1 Introduction plastic limit analysis with the computational methods of reliability

For deterministic problems, the theory of limit analysis pro'gheory. For a.par.tlcular reahzgngn of the rgndom ﬂel.d.o.f yield
. . ’ L strength, application of each limit theorem involves dividing the
vides a convement. MEtnod ok determlnlng upper anq lowggﬁtial region of the problem into simple elements on which the
bounds on the plastic collapse load of a continuous medium ofg.iaints of the theorem are enforced while optimizing the col-
structural system. For structural systems with randomly varial

h . h eff h se load. The collapse calculation based on the upper-bound
strengths, extensive research efforts have been devoted to comfias,rem involves a nonlinear programming problem. The collapse

ing reliability theory with plastic limit analysis; see, €.9., Wangoaq calculation based on the lower-bound theorem involves a
etal.[1]. In this class of problems which includes trusses anghear programming problem. The calculated collapse load is used
frames, the yield limits of potential plastic hinges of structuray, evaluate the limit state function in the computational approach
members are treated as random variables. Then the upper gfghodern reliability analysis. Bounds on the probability of failure
lower-bound theorems of limit analysis allow computation ofinder a given load can thus be calculated by the numerically
bounds on reliability for the plastic collapse load using the metlfficient first-order reliability methodFORM) and by the Monte
ods of reliability theory. Carlo simulation(MCS) method. Repeated calculations of failure

A similar approach is possible for problems involving continuprobability at different given loads enable bounds on the p.d.f. of
ous media with yield strength represented as a random field. Khe plastic collapse load to be determined.
example, continuous random fields have been applied in theAs an application of the methodology for illustrative purposes,
probabilistic analysis of slope stability in geotechnical engineethe classical indentation problem of an elastic/perfectly plastic
ing by Vanmarcke[2], Li and Lumb [3], Yucemen and Al- half-space is treated. The material is assumed to admit the von
Homound[4], among others. These studies used the limit equilitMises yield function with randomly variable yield strength mod-
rium method rather than the theorems of limit analysis to calculagéed as a homogeneous Gaussian random field with known mean,
the failure probability of the slope. Following a somewhat differvariance, and covariance functions. The indentation load is con-
ent approach, Nordgrd®] applied the kinematic theorem of plas-sidered to be constant pressure applied over a specified rectangu-
tic limit analysis to obtain an upper bound on the mean collap$ region of the surface of the half-space. It should be pointed out
load for problems of an elastic/perfectly plastic medium with rarthat the homogeneous Gaussian random field assumption is an
dom yield strength. To illustrate his method, Nordgren treated ti&proximation to the statistical structure of some engineering ma-
plane problem of a wedge under pressure over a portion of oi@ials on the macroscopic level. Considerations of random field
surface. In another probabilistic study, Ostoja-Starzewski and Ilifgsed on micromechanical analysis and its associated discretiza-
[6] used the slip-line theory of plasticity to obtain the probabilit%'on for numerical analysis have been carried out by Jiang et al.
density function(p.d.f) of the plastic collapse load for the planel 7] and Ostoja-Starzewsk8]. . .
problem of a cylinder under internal pressure with spatially ran- FOr the plane problem of the illustration, upper and lower
dom yield strength. Both of these last two studies employélP_UndS on the p.d.f. for the plastic collapse pressure are computed
Monte Carlo simulation to obtain information on the probability/Sing the upper- and lower-bound theorems and FORM. The re-
of plastic collapse. sults are verified by MCS using importance sampling for repre-

The present investigation provides general methods for anal?f—ntﬁti\r’],e r(;asers. Rer?]ultsr fgr_lt_r;]e C"":‘jsfi?ar' Hi“ and Prrandtlr fqirl]u[re]
ing the reliability of an elastic/perfectly plastic medium Whoi%ﬁcm;:an?s?n?scf% ur?gt% HaveeapioWé rovacr?a:gesfhgr??r?;t %f' thee

yield strength is regarded as a continuous random field. The p ail hani ithouah th fail load i -
posed methods combine the upper and lower-bound theorem ggndtl mechanism aithough the mean failure load is approxi-
mately the same in both cases.

BT . ) Next, the three-dimensional indentation problem is treated in a
INow at EQE International, Inc., 16850 Diana Lane, Houston, TX 77058. Lo . .
Contributed by the Applied Mechanics Division of The American Society o _'”?”ar manner using the uppgr-bound theorem and t.he pmb‘."‘b"

Mechanical Engineers for publication in th@URNAL OF APPLIED MEcHanic-  IIStIC results are compared with those of the plane indentation

SASME . Manuscript received by the ASME Applied Mechanics Division, June 14problem. In the presence of randomly varying yield strength, the

2000; final revision, Feb. 6, 2001. Associate Editor: M.-J. Pindera. Discussion of tligdentation problem is essentially three-dimensional even if the

paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme : ; ; ; :

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi @bmeuy a.nd Ioadlng SUQQESIS a two-qllmen§|onal approxmatl_on.

be accepted until four months after final publication of the paper itself in the ASMEPUI numerical results show that two-dimensional models are in-

JOURNAL OF APPLIED MECHANICS. appropriate for this problem. Also, the present study offers a direct
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way of calculating the three-dimensional reliability and assessingqere\)v(vyx) is the external rate of energy performed & and
the validity of a previous approximate meth(i@,4)). It is found I':(v,x) is the rate of internal energy dissipation, represents

that the reliability results given by the present study adr4fhdal values of an admissible velocity field andepresents the

;T)%C;V;:!J"ith this approximate method, thus confirming itSnodal coordinates of the mesh. The least upper bound on the plas-

tic limit load multiplier is obtained by performing the following
optimization problem:
2 Theory of Plasticity and Limit Analysis

We begin with a brief review of the theorems and methods of p—minimiz% F(V'X)] 5)
plastic limit analysis for an elastic/perfectly plastic material with V,X (v,x)
deterministicinhomogeneous material properties. The theorems . .
are stated for the special case of surface tractions governed by a subject toAv=0, andvi =1,

. 8 . erev} is a particular velocity component which is taken as 1
Zero dlfpl)llacements mayf bﬁ pres;}:nbed on a plo:jt!on of th? bOURGY: ormalization. The equality constrait=0 arises from the
ary. A fuller treatment of these theorems, including proofs, mayyissinility condition of no normal velocity jump acrdSs (as-
be found, e.g., in Koitef9]. In a later section we will consider y y jump acraSs (

. > sociated with the von Mises yield criteriprin view of the ele-
the case of random material properties and methods for thﬁﬂ%nt discretization, (7,x) can be written as

single load multiplier and in the absence of body force. Also, onggj:

characterization.
Ns
2.1 Upper-Bound Method. The upper-bound collapse theo- I':(v X)ZE k(x)|5v(i>|dB_ (6)
rem of plastic limit analysis states that an elastic/perfectly plastic ' = B, ! "

body cannot support a given system of loads if any kinematically ] o

admissible collapse mechanis&) (not necessarily continuoys WhereNs is the total number of velocity jumps on element faces,
exists for which the work rate of the given loads exceeds the rs#8d B; is the length of side i for a plane problem or the area of
of plastic energy dissipation in the body, i.e., the body will colsurfacei in a three-dimensional problem. The lengthy expressions

lapse if for W andA in (5) are given in the theses of Ku0].
0 do> 2.2 Lower-Bound Method. The lower-bound collapse theo-
J'Sﬂpo, vids fVD(e”)dV+ J'SDDS( o8ij)ds, (3) rem of plastic limit analysis states that if an equilibrium distribu-

tion of stressoj; can be found which satisfies the equilibrium

equations and meets the stress boundary conditioS,0and is

everywhere below the yield limit, then the body will not collapse

under the applied loads.

A numerical method similar to that proposed by Lysrjikt] is

sed here to determine the plastic lower bound. In this method the

whole body is divided into an assemblage of physical elements as

in the upper-bound method. A linear stress field with unknown

coefficients is assumed for each physical element. Equilibrium

1 1 within the element is satisfied by adjusting the coefficients. The

eij=§(vi,j+vj,i), 5eij:§(5vi,j+ ovj i), (2) external equilibrium between the applied load $pand the in-
ternal force can be written as

whereév;; denotes the jump in the discontinuous derivatives;of o T

on Sy . Further, the velocity field must satisfy the zero displace- ps'=H(x) 'z, ™)

ment boundary conditions on the porti&y of the body surface \yhere ps” is the applied load vectog is the collection of un-

S(S,+3,=9). Also, restrictions on admissible; and de;; are  known coefficients from all elements, amilis an index matrix

imposed by the plastic flow rule as will be discussed. relatingp<C to z. In addition to satisfying equilibrium within each

The von Mises yield function is employed in the present studyjement, the assumed stress field must satisfy equilibrium between

The flow rule associated with the von Mises yield criterion regach pair of elements. This condition of inter-element equilibrium
quires that the strain rate field be incompressiblg=0) and that

. AT ! can be written as
no separation occurs normal$g . Then the dissipation functions
can be written as Q(x)z=0. (8)

D(éij):k‘/Zéijéijr D 5éij):k| Svy, (3) The lengthy expressions for the mattixandQ are given by Ku

whereV is the volume of the body;riO is the distribution of ap-
plied stress fop=1 on a portionS, of the body surface$ p is
the load multiplier,Sp is an internal surface of velocity disconti-
nuity, v; is the velocity field,&éij is the strain rate jump across
surfaceSp , andD andDs are the dissipation functions associated),
with the strain rateg;; in V and ée;; on Sy, respectively. To be
admissible, e;; and de; must satisfy the strain rate-velocity
relations

).
S ; ) For computational purposes in problems of plane strain, the
velocity jump acrossS. For an inhomogeneous materid, nponjinear von Mises yield function is approximated by a linear

=Kk(x). lower bound
The numerical method used in the present study for the upper '

bound theorem first divides the physical domain into a plastic (O'X—O'y)2+(20'xy)2S(2k)2 9)
region and a rigid region. The plastic region is then divided in . . L . .

an assemblage of triangular elements for plane problems or tet?g-e _ecf;ﬁgtzvgﬁ Srgg?fsséh%gtiﬂg{eﬂfs ?hg:]CLZ '?a:fl%_g Vaaggm_
hedral elements for three-dimensional problems. The velocity %Y. P i L ide the circl T'?} i y d vield
field is taken to be constant in each element. Siﬂpeo in each f nation |neatr) segm(;nlt_s 'HS' e the circle. The linearized yie
element, the velocity field results in zero volumetric dissipation jffynction may be symbolically written as

V, i.e.,D(ej;)=0. Velocity discontinuities are allowed at the inter- D(x)z=<b, (10)
element boundaries and on boundaries between the plastic region . .

and the rigid region. The element mesh used for the upper-bouf{fiere the expressions fér andb may be found in Ki[10]. For
method(as well as for the lower-bound method to be discusséd! Nomogeneous distribution of yield strendtfx) =k=const., it

wherek is the yield strength in pure shear afig, is the tangential

laten will be called thephysical element medfereafter. is sufficient to ensure the no-yield condition throughautoy
The inequality(1), may be symbolically written as checking the linearized yield function at each vertex of all the
; . triangular physical elementsince the stress field is linear within
pW(v,x)>F(v,x), (4) each physical elementFor the inhomogeneous cakgx), satis-
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faction of (10) requires checking at additional points dependingbility of a system can be collected into a veci¥grand a limit

on the form ofk(x) as will be discussed in Section 4.3. state functiong(y) is introduced such that the system is safe if
The problem of finding the lower-bound plastic limit load carg(y)>0 and fails ifg(y)<0. The failure probability is given by
be formulated as the following optimization problem: the following integral:
— imi T
p ma:iermZEH(x) Z] (11) pf:f fo(y)dy, (16)
g(y)<0
subject t0Q(x)z=0, and D(x)zsb. wherefy(y) is the joint probability density distribution function

In the special case where the mesh shejespecified(11) is of random variable¥. The reliability of the system is defined as
a standard linear programming problemarand efficient algo- L~ Pr- Let uy andCyy denote the vector of the mean value and

rithms are available for solving such problersee, e.g.[12]). the covariance matrix oY, and letU be.a set of mutually inde-
pendent, standard normal random variables. A linear transforma-
3 Reliability Problem Formulation tion betweenY andU may be written as
_ 11y _ _TTT

3.1 Random Field Discretization. In the present study the Y Ayt TU, oru=T (Y—ny), where Cyy=TT (17)
random yield strengthk(x), is considered to be a Gaussian ran-
dom field of the form After the transformation fronY to U, the limit state functiorg(y)

— may be stated in the standard norriakpace as
k(x)=k+f(x), (12)
G(u)=g(puy+Tu). (18)

T-Iﬁe first-order reliability method evaluates the integrE®) ap-
d?{a)ximately by first solving the following nonlinear optimization

the yield strength. For the Gaussian random field, the mean 2 blem:

the covariance function fully describe the probabilistic structure o

f(x). For plane problems the covariance functionfitx) is taken minimize{8=|u|} subject to G(u)=0, (19)
as exponentially decaying in the form u

X1—%\2 [y1—V¥2\? where g is the reliability index and has the geometrical meaning
5 5 , of being the point orG(u)=0 which is the closest to origin in
X 4 (13) space. The solution ofl9) is termed the most probable failure

5. ) point or design point and is denoted by. Then, the first-order
whereo is the constant variance 6(x). Here,d, and 6, may be approximation of failure probability is given by

interpreted as the correlation lengths of the random field irxthe
andy-directions, respectively. For three-dimensional problems an pi=0(—p), (20)

additional term can be inserted for thelirection. In their study of \yhered() is the cumulative Gaussian distribution function. There
a plane slope reliability problem, Li and LuniB] observed that js aiso a second-order approximationgpwhich is not used in
the particular functional form of the covariance function does ngge present study.
significantly affect the reliability results, which depend mainly on
the characteristic lengths and the variance (o).

In order to discretize the random field, let; be the random )
nodal value off at coordinatex; , wherey; is not to be confused 4 Example Problem: Half-Space Under Normal Load

with coordinate variable. Then the random functii(x) can be The principles state in the previous two sections will be com-

C(X1,Y1;X2,Y2) =0 exp{ -

approximated as bined and applied to a half-space under normal load as an ex-
N, ample problem. In the reliability analysis the mesh coordinates in
_ " (5) and(11) can be kept fixed at the values obtained from a de-
Fx) ,21 ayihi(x), (14) terministic analysis to simplify the reliability computation. The

) . . . validity of this simplification will be verified in a latter section
whereN, is the total number of nodal points in the random fieldyhere numerical results are presented. In addition, by applying
mesh anch;(x) is the interpolating shape function for nodal poingys simplification, we obtain several useful characteristics of the
i, which satisfiesh;(x;) = ;; . With the standard deviation in-|imjt state functions in the reliability method derived for the upper

cluded in the seriesy; is a zero-mean Gaussian random variablgnq |ower-bound approaches. These derivations are presented in
with unit variance. A convenient choice fb(x) is a piecewise ipe present section.

linear function over a selected mesh. This particular linear shape
function method will be called the SF-Linear method. Other forms
of shape functions are possible. A more accurate representation o#.1 Two-Dimensional Upper-Bound Limit State Function.
the shape function was given by Li and der KiuregHia8] in the Figures 1a) and 1b) show the mesh discretizations based on the
form of slip line solutions of the well-known Hill and Prandtl mecha-
1 nisms. The accuracy of these discretizations in the deterministic
h(X)=CyyCixy (15) analysis can be improved by using more triangles to model the
T_ ; ] inn centered fan region. For the discretization meshes shown in Figs.
where h(x) =[h1(),...y, ()] is a row vector of dimension 1(a) and 1b), it can easily be showt[10]) that the kinematic
equality constrainfv=0 in (5) together withv;* =1 constitutes a

is the N, XN, covariance matrix between each pair of noda‘ﬂe.terminiStiC (sq.uare matrix system of gquations_ ang iS.
points. BrothCrf(X)Y andC,y can be readily obtained by Consider_unlquely determined. However, for finer discretizations the kine-

ing (13). This shape function is obtained from the optimal "neamatic equality constraints matrix is not square and optimization

estimation(OLE) theory and this discretization method will beMust be carried out on the velocity field. It will be illustrated in
called the SE-OLE method. the following section by way of a numerical example that the

simple discretizations as shown in Figgajland Xb) produce
3.2 First-Order Reliability Method (FORM). We review reasonably accurate results both in the deterministic and reliability
here a formulation of reliability theory given by Ditlevsen andanalyses; thus velocity optimization will not be needed in the
Madsen[14]. The Gaussian random variables governing the reléxample problems considered here.

N, ; Csxy is a column vector of dimensioN, storing the cova-
riance betweerfi(x) and each random field nodal values; ahg,
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In the upper-bound reliability method the limit state funct
for reliability analysis at a fixed load multipligr may be written
as

F(v,y)

aly)= W)

—-P. (1)

After combining(6) and (14), F(v,y) can be expressed as
NS

F(v.y)=2, (Iévﬁ”l
=1

It may be shown that the limit state functigify) is linear iny,
i.e.,

N

B =

} . (22)

a(y)=(mo+dTy)—p, (23)

where g is the mean plastic strength. Usifitj7), the limit state
function in standard norma) space can be written as

G(u)=R(u)—p, (24)

wheree=T"d. The above limit state function is in the form of t
difference between resistanBeand the applied load multipligg,

where R(u)= uy+e'u,
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x/38,
(@) Hill mechanism and (b) Prandtl

iorthusR may be regarded as the plastic limit strengtimit load) of

the half-space. It may be showfi0]) thatR is a Gaussian ran-
dom variable with the following mean value and standard devia-
tion:

MR= MO, U'R:|e|- (25)

It was possible to obtain the analysis express@4 for the dis-
tribution of R in the upper-bound method because the limit state
function, (23) or (24), are linear and/ is known from determinis-

tic analysis. In the lower-bound method, to be discussed next, the
limit state function is nonlinear and the distribution®has to be
determined numerically by repeatedly changing the applied load
multiplier p and re-solving the reliability problem.

4.2 Three-Dimensional Upper-Bound Limit State Function.
When the indentation pressure acts over a limited lengtha
three-dimensional problem results, as illustrated in Fig. 2. Addi-
tional assumptions involved in considering such a three-
dimensional failure mechanism will be discussed in later sections.

he A limit state function for the three-dimensional problem similar
to (23) can be expressed as

Transactions of the ASME



method. Thus, only the SF-Linear method is used in the present
End section 2 study.
y Determination of the gradient of the limit state function with
je— \B —>f respect to random variables is an important step in reliability op-
! timization calculations usingl9). An efficient method of calcu-
lating the gradient vector af(y) with respect to componery
exists for the proposed lower-bound reliability method. As stated
: above, since the functiog(y) depends only ory, throughb, we
- may write

z riorate the numerical efficiency of the lower-bound reliability
ﬁx

R / ; a9 <\ ag b,

=2 30
Y =1 by dyy (30)

‘ whereN; is the total number of linear inequality constraints. The
Y term db; /9y, can be readily obtained frorf10), (11), (12), and

(14). The termdg/ db; is the sensitivity of the linear prografi1)
End section 1 with respect tdb. This sensitivity measure is the dual solution of
) ) ) ] ] the linear programming problem. The dual solution is a by-
Fig. 2 Fallur_e mgchanl_sm_of a three-dimensional half-space product in solving a linear programming problésee, e.g.[12]),
and random field discretization mesh thus only minimal numerical effort is needed to evaluate the gra-
dient dg/dy, . The behavior of the dual solution is such that it
remains constant for a small perturbatiorbdbut varies when the
perturbation is large enough. Thus the limit state funciigg)
g(y) = (up+ metdoy+dly)—p, (26) exhibits piecewise linear characteristics. However, numerical ex-
. ) ) . perience shows that the convergence behavior in sol{i8yis
where u, is the mean plastic strength provided by the failurgimilar to that of solving a smooth limit state function since the
surfaces in the longitudinal direction, apd is the mean plastic |inear patterns are relatively small.
strength contributed by the two vertical end sections. After trans-
forming the variables into the standard normal space, the limit
state function can be written as

G(u)=(R.+Re)—p, @7)

5 Numerical Results

Failure probabilities are evaluated numerically for two-
whereR_ = u{+bju is the random strength provided by the fail-dimensional and three-dimensional indentation problems for an
ure surfaces in the longitudinal directidR,= u.+bu is the ran- €lastic/perfectly plastic material with randomly varying yield

dom strength provided from the two end sections, hpe d T strength using the methods developed in the preceding sections.
' 9" The applied indentation pressure multipligis assumed to be a

_ T - . . B .
bedeT inwhichT is the trans_fo_rmatlon matrix betwe_e” rar.'donbeterministic constant, although the proposed methods have no
variablesy andu. The plastic limit load of the thre'.a.'d'm.ens'onaldifficulty treating problems witlp as a random variable. Before
?alf-S?%C_QR, is the siuorln tOELt.and Reth Ir?e probablllfy d'Strc'jbut' considering the random case, in order to verify proposed compu-
dlondod _|st_a norma bls ribution wi € mean value and stafjqng| methods, we present deterministic numerical results for a
ard deviation given by material with constant yield strength

MR=HoF e, (28)

0&=|b1+b,|2= by |?+|b,|?+2by - b,

=Var[R ]+Var[R.]+2Cov[R,,R.]. (29) 5% ‘ ' ' ’ '

Prandt] mechanism
4.3 Lower-Bound Limit State Functions. In applying the ST
lower-bound reliability method, again we do not optimize on th
physical element discretization meghn (11), i.e., H(x), Q(X),
and D(x) are kept fixed in the reliability optimization problem

. Hill mechanism

(19). The validity of this simplification will be illustrated by way 52

of numerical examples in the following section. sl R e
The limit state functiorg(y) is defined by(11) with the applied p/k ~ Slip-line solution :

load p moved to the right-hand side, similar 1). We note that BE e KT e

the random variables only appear in the yield strength veztor , :
It has been mentioned previously that for homogeneous cc  48F— S N EE v
stant yield strength it is sufficient to check the yield conditions ¢ ‘
the vertices of each physical element to ensure that no-yield cc 48
dition is satisfied everywhere. For nonhomogeneous yield streng
the yield check must be performed at more points. Since the str 47
field is assumed linear within each physical element, it is possit
to ensure the no-yield condition when the SF-Linear met(ulist
cussed in Section 3)1s employed to discretize the random field
by checking at a small number of known points. However, if othe 3 4 5 8
random field discretization methods are used, e.g., the SF-O
method, then relative minima of the yield function must be lo-
cated in each physical element and the yield condition must bgy. 3 Deterministic upper and lower-bound results for a plane
checked at these minima. This calculation would seriously detealf-space indentation problem

Hill mechanism

Prandtl mechanism

Number of physical elements
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Fig. 4 Element discretization of 78 elements and 36 random field nodes

5.1 Two-Dimensional Deterministic Half-Space Indentation In the numerical computations the optimization on mesh coor-
Problem. The well-known theoretical plastic collapse pressurdinates has been performed as shown in Fig. 1 for Hill and Prandtl
for a half-space in plane strain without body force, according t@echanisms with a five-element discretization. Numerical results
the slip line theory, coincides for the Hill and Prandtl mechanismg; collapse pressure are shown in Fig. 3 for three, four, five, and

and is given by six elements. The same optimized mesh coordinates are obtained

p* =(2+mk. (31) for the upper and lower-bound methods using the same number of
5
41 . . . .
& 2 B L L

Reliability Index B
w

—&— Upper Bound Method, w/c Mesh Optimization on Velocity Elements
—8— Upper Bound Method, with Mesh Optimization on Velocity Elements
1 —&— Lower Bound Method, with Mesh Optimization on Stress Elements
—— Lower Bound Method, w/o Mesh Optimization on Stress Elements

0 T T T T
0 20 40 60 80

Number of Velocity/Stress Elements

Fig. 5 Convergence of reliability index with increasing number of random field
nodes
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—e— Upper Bound Method, w/o Mesh Optimization on Velocity Eilements

—=— Lower Bound Method, w/o Mesh Optimization on Stress Elements
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Number of nodal points of random field

Fig. 6 Convergence of reliability index with increasing number of random field
nodes

elements. The results of Fig. 3 show that five elements suffice fimeshes. This shows that within the five-element pattern the opti-
reasonably accuratdetween 2.7 percent and 1.2 pergeggtlcu- mal solution for the upper-bound method requires only the five
lation of bounds on the collapse pressure in the deterministic casggions moving as rigid bodies even when the yield strength var-
o ) ) ies inhomogeneously. Convergence study for the stress element of
5.2 Reliability Analyses of a Two-Dimensional Half-Space he |ower-bound method in Fig. 5 shows increasing accuragy of
Considering the Hill Mechanism. A few convergence studies gs the stress elements are refined.
are condl_Jcted first to determine the appropriate sizes needeq fon Fig. 5, results are shown for cases where the mesh shape is
the velocity and stress element, as well as for the random figld yteq as fixed or variable in the optimization process to find the
mesh. A series of velocity and stress element discretizations we est 8. For the given parameter given {82), the upper and
used beginning from the five-element mesh shown in Fig. 1 a’ﬂﬁ&er bounds of3 for the fixed mesh case are’ found to he@.4

ending with a fine element mesh with 78 elements shown in Figercent relative to the avera¢®.86 and 3.3 and 3.4 percent
4, where the average element linear size is approximaiély relative to average for the variable mesh cé&6€8 and 3.44 It

Th(rjeeesotTer me)shes iFtermet(jjigtetr?ethandBM (Wiihle' 3& should be noted that significantly more computational efforts have
ia;nth el e?wetr;:%? ts;(raeaa Sﬁelési?] dg:natei)oilolrc])\;edrgTetrwlggesnlie}s/'h\évs arreetol be spent for including the mesh shapes as variables in the
9 pp . o%{imization Eqs(5) and(11).

based on the basic pattern of five-element mesh, with varying_. -
details of dividing within each of the basic five elements. ~Figure 6 shows the convergence study for refining the random
field mesh while the velocity and stress element meshes are kept

Also shown in Fig. 4 is the random field mesh with @x4) X P .
random field nodes. Four other meshes are used for the con\%}OStant' The random field mesh of 36 nodes, shown in Fig. 4, is

: : A found to be appropriate for the parameters considerd82n
ency study, with the discretizations of3&2), 21(7x3), 60(12 . TR .
g<5), énd 9%15><6) nodes. Only half of the geor;etry)is ((:)E)nsid- Figure 7 §hows the effects on the rellabll[ty |nd|ces of varying
ered due to the symmetry of the problem. However, in reliabilit e correlation length. For smallers the realizations of random

analysis the material yield strength is randomly distributed a .ld will typically have more peaks a_md troughs 'ghan for larger
hence not symmetrical. It may be readily understood that failul&ith More peaks and troughs there is an averaging tendency upon

over either half of the geometry is sufficiently critical than requir'-me‘-:"'alt::On tc(i) con;pute t:ehinternal er?ergy diss(ijpat!l(ll‘n; the
ing failure on both side of the geometry; thus reliability analysidPPer bound methodand the strength computed will be more

on only half of geometry is appropriate as will be done in thgoncentrated around the average value giver3y. The associ-
presen){ study. 9 y pprop ated reliability indexg is higher for smallers, because strength

The following parameters are used for the convergence studgh.us computed is less likely to fall below the given external load

when simulations are performed. A&-, the random field be-

p/?=0.8$*/?, a/?=0.115, (32) comes a single random variable agdapproaches a constant
value. Results in Fig. 7 for the lower bound methods follow the
6x/B=46,/B=0.4. same characteristics.

Figure 5 shows the convergence of the reliability index for the For the cas€32), the lower-bound FORM reliability analysis
upper and lower bound methods using increasingly finer mestgiges 8=3.33 (p;=4.34x10 *) for §,=0.4. The Monte Carlo
for the velocity and stress elements. An interesting observation fmulation (MCS) using importance sampling[15]) gives

the upper-bound method is th@ is insensitive to using finer 8=3.36 (p;=3.88x10 %) for a coefficient of variation of four
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Fig. 7 Variation of reliability index with increasing correlation length

percent, which is considered sufficiently small. The sampling den-5.4 Reliability Analyses of Three-Dimensional Half-Space.
sity function in the importance sampling simulation is chosen asfathree-dimensional indentation problem is illustrated in Fig. 2.
standard normal distribution centered at the design pointas The reliability of the three-dimensional problem is studied here
calculated from FORMIin the standard normal spaaeA total of  using only the upper-bound methddVe assume that the plastic
3000 simulations is carried out in the MCS importance samplirnggion of the three-dimensional half-space lies inside a cylindrical
calculation. surface and is bounded by two vertical surfaces a distaragart.
Based on the MCS result, it may be seen that the FORM anallhe possibility of a plastic region with failure length less or
sis gives a very accurate approximation to the lower-bound reli-
ability for this case. However, for very small correlation length,
8,=0.4, the current stress element mesh may have to be furthefThe lower-bound method also could be applied to the three-dimensional problem
refined to obtain the same accuracy. but leads to intensive computations that were not pursued in this investigation.
This confirmation of the FORM analysis is essential here since,
as discussed in Section 4.3, the lower-bound limit state function is
nonsmooth and exhibits piecewise linear characteristics. The corr
putational efforts required by MCS using importance sampling is
several hundred times that required for the FORM calculations
By varying the applied load a full cumulative probability distri-

It

9

058

bution of p/k has been obtained as shown in Fig. 8 for both the

upper and lower-bound methods. 0.7 -
06 -

5.3 Reliability Analyses of Two-Dimensional Half-Space Lower Bound Method
Considering the Prandtl Mechanism. An analysis similar to 0.5 1 F\
the foregoing is performed using the upper-bound method for theg
Prandtl mechanism. The physical element and random field ele™ 04 1
ment mesh are shown in Fig(k. For the given problem param-
eters,(32), the upper-bound reliability indeg is found to be 5.38, 031
compared to3=3.86 when the Hill mechanism is considered.
Thus, for small applied loagh<<p*, it is much more likely for the
half-space to fail in the Hill mechanism rather than in the Prandtl |
mechanism. The plastic limit load for the two mechanisms are
both Gaussian distributed. The two mechanisms have approxi : ‘ , ‘ i i ‘ . .
mately the same mean values but the Prandtl mechanism has 4 42 44 46 48 5 52 54 56 58 6 62
smaller standard deviation. This is due to the larger extent of the Coliapse Pressurc / Mean Yield Strength
plastic region involved in the Prandtl mechanism. Further, the
smaller standard deviation explains the higher reliability index ¢fig. 8 Cumulative probability distribution of collapse pressure
the Prandtl mechanism. for the plane half-space problem with Hil’'s mechanism

ability of Failure

\ Upper Bound Method

—

722 | Vol. 68, SEPTEMBER 2001 Transactions of the ASME



mode |

Reliability Index

mode 2

Present Study

....... Approximate Method

0 T T T T g T T
0 1 2 3 4 5 6 7 8

Correlation Length

Fig. 9 \Variation of reliability index with respect to increasing failure length
for three-dimensional half-space under load p=0.85p*

greater tharl is not considered in this study. This point may calimerical results show the two modes are weakly correlateatial

for further investigation depending on the nature of loading igorrelation coefficient 0.03The system reliability index is virtu-

actual applications. ) ) _ally identical to the component index @=18.5 atL/§=2.5 for
Results of reliability calculations for the three-dimensional; present example.

half-space using the method of Section 4.2 are shown in Fig. 9 symmary, the system reliability index variation will be vir-

with the failure length varying from O to 7256 where 5 is the y,a|ly the sameB variation as the more dominant mode, except

given correlation length of the random yield strength field. Ffear| /5=2.5 where we expect to see a very small smooth tran-

simplicity of presentation the correlation lengths in they, and  gition zone(not shown in Fig. ®

z-directions are assumed equal and denoted.lfyesults are cal-  por this same problem, the approximate method of spatial av-

culated for the case oB/6=2.5, whereB is the width of the erage and variance reductidi2,4]) is employed to produce ap-

applied pressure region. _ _ _____proximate solutions as follows1) the probability distribution of
The assumed failure mechanism has two possible orientatiqfg |imit load of a two-dimensional problem is obtained using a

(modes for. the failure cyllnder. Wl'_[h refergnce to Fig. 2, in thegnown method(2) Var[R, ] (see Section 4)3s estimated by the

mode 1 failure mechanism the failure cylinder rotates about @@_called “variance reduction function,’3) Var[R.,] and

axis pgrallel to thez-direction. In the mode 2 failure mc_achanlsmCOU[RL ,R.] are neglected(4) the probability distribution of

the cylinder is turned 90 deg and rotates aboutif@is. The  three-dimensional limit load is assumed to be Gaussian with

possible occurrence of both failure modes constitutes a series §gswn mean value and the estimated variance from @g¥his

tem reliability problem(see, e.g.[14]). — approximate method has been applied to three-dimensional earth
Results for the reliability index are shown in Fig. 9 for a rangg|ope stability problems. The solutions for mode 1 and 2 obtained

of L/ 6 for the two modes of failure. For the mode 1 mechanism & this method are also plotted in Fig. 9. For very smalp the

low values ofL/é the effect of the end sections dominates angproximate method produces unrealistically higifor mode 1.

leads to high reliability indiceslow probability of failurg. If the  This s due to the fact that at this rangeldfs the end effects are

end sections are not considered, whg@—0 the reliability in-  gjgnificant, thus neglectinyar[R.] and Cov[R, ,R.] result in

dex will approach the two-dimensional upper-bound solution large errors as has been discussed by Vanmaf2keFor the

Section 5.2 for which 4=3.86. However, with the considerationapproximate mode 2 curve &t 5=0, the reliability index starts

of end sections, the half-space is much stronger and thus Mytdln B=2.10 (a result of solving a two-dimensional problem by

higher B values are observed in this regime. , the proposed methadThe general trends of the approximate so-
For the mode 2 mechanism the rolesBJi andL/é are inter- tions follows those of the solutions obtained by the present limit

changed. After calculations based on the proposed method, Hgysis-based methods.

reliability index for mode 2 stars fror8=2.35. From Fig. 9, it is

seen that mode 2 is more likely to occur than mode 1 in the rangeC luSi

of 0<L/6<2.5=B/§. For the range ol/6>2.5, the mode 1 onclusion

mechanism is more likely to occur than mode 2 mechanism. Methods are developed in this study to assess the reliability of
As mentioned previously, the failure of the half-space is a serias elastic/perfect plastic medium against plastic collapse. The

problem with two mechanisms combined. However, owing to thmethods are illustrated by considering a half-space under normal

dominant nature of one on the other mechanism except nearladid. By combining the plastic limit theorems with the methods of

L/6=2.5, the system reliability variation curve will be nearly themodern reliability theory, upper and lower bounds on the reliabil-

same as the more dominant component curveLAi=2.5, nu- ity index may be computed efficiently for plane problems. The
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Mode Il Edge Delamination
of Compressed Thin Films

D. S. Balint
Assoc. Mem. ASME Ceramic coatings deposited on metal substrates generally develop significant compressive
stresses when cooled from the temperature at which they are processed as a result of
J. W. Hutchinson thermal expansion mismatch. One of the main failure modes for these coatings is edge
Fellow ASME delamination. For an ideally brittle interface, the edge delamination of a compressed thin
film involves mode Il interface cracking. The crack faces are in contact with normal stress
Division of Engineering and Applied Sciences, acting across the faces behind the advancing tip. Frictional shielding of the crack tip has
Harvard University, been shown to increase the apparent fracture toughness. Roughness effects associated
Cambridge, MA 02138 with the separating faces can also contribute to the apparent toughness. A model of mode
Il steady-state edge delamination that incorporates combined friction and roughness ef-
fects between the delaminated film and substrate is proposed and analyzed. This model is
used to assess whether frictional shielding and surface roughness effects are sufficient to
explain the large apparent mode Il fracture toughness values observed in experiments.
[DOI: 10.1115/1.1388012
1 Introduction roughness has on the delaminated film as it slides over the sub-

Many thin film manufacturing techniques create residu

ﬁirate. The roughness forces open the film-substrate interface as
stresses in the film that can lead to failure. Ceramic coatings

e delamination crack faces displace, resulting in normal stresses

posited on metal substrates generally develop significant compr%%-the interface that are larger than those produced in the absence

. ; . roughness. This leads to greater frictional dissipation and
sive stresses as a result of thermal expansion mismatch Wg ri]eldigg of the crack tip. At thegsame time, however Fi)t can also
cooled from the temperature at which they are processed. Sy;t%v %ge open the crack tip producing a mbde | stréss intensity
'(I)'\f/vtohlchfti/IE: arri?ng: 'nft;ﬁfet ?r']sotc?gr?;l Eﬁ}: rsleirnaggmwfgsrs?gst;%%mponent. Most failed interfaces have a characteristic roughness.
edge delamielationyand buckle delaminatiori. Fig. 1 pThe clas- The present study suggests that frictional slicamglwedging due
09 . - . - 1g. 5.0 to roughness should generally be considered in combination in
tic energy per unit area stored in the film which is available lJpO[5?roblems such as this. Specifically, it will be shown that nano-
edge delamination is scale roughness has a significant influence on the effective mode
(1—1%)o2h W Il toughness of films whose thickness is in the micron range.

2E 2 Formulation of the Model
whereE andv are the Young's modulus and Poisson's ratio of the 5 1 \odeling the Delaminated Interface. We  study

film, h'is the film thickness, and is the uniform compressive gieaqy-state edge delamination of a thin film of thickriessith
biaxial prestress in the film. To a first approximatigh, is also  gnear modulus. = E/(2(1+ v)) and Poisson's ratio’ that is in

the energy available to drive the interface delamination crack fQhitorm residual compression and is bonded to a very thick sub-
buckle delaminations. The typical flaw siga the form of a deb-

onded regioh needed to initiate a buckle delamination is about
20h. Delaminations that emanate from a film edge and terminate
in the interior of the substrate surface only require debond flaws
as small as 1 or 2 for initiation ([1]). This would suggest that
edge delaminations would be more commonly observed than
buckle delaminations. In fact, the opposite is true. Many systems
seem to fail primarily by buckle delaminations initiated away h
from the edges of the film. T
There are many reasons why edge delaminations are less com-
mon than might be expected. Edge delamination is a mode Il
cracking phenomenon when the film is in compression, and it is
now well known that mode Il tends to be associated with the
highest interface toughness. By contrast, buckle delamination is
mixed mode but approaches mode Il as the delamination spreads
and arrestg[2]). In addition, there are extrinsic effects accompa-
nying mode Il edge delamination which contribute to the apparent
toughness. Frictional sliding is one such effé€3]). Another,
which is the primary focus of this paper, is the effect that surface

go:
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strate having the same elastic properties. Stringfellow and Freund ‘
[3] showed that the effect of elastic mismatch between film and Y
substrate is secondary to the role of friction. The same is expected A
for the roughness effect studied here, and thus an investigation of T
the role of dissimilar materials is postponed. The delamination is
assumed to have propagated away from the edge a distance that is
much larger than the film thickness, such thais the only rel-

evant length scale. Friction and roughness effects are significant
mainly within a few film thicknesses of the interfacial crack tip, so

the film-substrate system can be modeled as an elastic half-space

with a thin film perfectly bonded along half of its length and fully
delaminated along the other half. Under plane strain conditions

the problem reduces to a two-dimensional one where the film is in

a state of uniform compression far ahead of the interfacial crack Ri . ’ .

AN

tip and is stress free far behind the crack tip.

Using the superposition scheme shown in Fig. 2, the problem of
interest(c.f. Fig. 2Aa)) can be decomposed into the problem de-
picted in Fig. Zb) and the reduced problem shown in Figc)2
Note that there is no displacement of the film relative to the sub-
strate for the problem shown in Fig(l. This can be understood _. 3 Th i ¢ | and t tial disol ;
by imagining a film that is under uniform compression and then %sed b © couping ol normat and tangential displacements

. . . y surface roughness
debonded along half of its length with a compressive stress ap-
plied remotely to hold it in place. Since the displacement is zero,
the stress intensity is also zero. Thus the displacement and stress
intensity for the problem of interest are identical to those for the To model the roughness, the relative normal displacement of
reduced problem. It is the reduced problem that is solved in tHfe two surfacesg,, is assumed to be related to the relative
paper. tangential displacement of the two surfacés, by

Roughness on a scale that is small relative to the film thickness 5.(s)=R(1—e %) 2)
is assumed to be present at the interface between the delaminated n ’
film and the substrate. Specifically, the results which emerge froahich is plotted in Fig. 4. We retain the assumption of Coulomb
the present study suggest that roughness on the order of one Htintion at the interface such that on a scale that is large relative to
dredth the film thickness or even somewhat smaller has the largedtut small compared th
effect on the apparent energy release rate. The roughness is as- _
sumed to be random on the delaminated interface such that once Txy(X) =~ pi0yy(X) x>0, ®)
sliding across the interface has occurred on the order of owhen sliding occurs. Thus, the rough interface is replaced by a
roughness half-wavelength the two surfaces become uncorreplanar crack where the two components of crack-face displace-
lated and are thereafter propped open a dist&t)d¢he amplitude ment are constrained bi2) and the two components of traction
of the roughness. This is depicted in Fig. 3, although the influenaee constrained by3).
of the two-dimensionality of the roughness is not portrayed. Conditions must be imposed to ensure that the solution is con-

sistent with the sign of the friction conditiofi) the normal stress

behind the delamination crack tip must be compressiveianthe

tangential displacement must be a monotonically increasing func-
y tion of distance behind the tip. The latter of these conditions en-

sures that the sliding is in one direction under the steady-state
| propagation.

O—0O=0 _ J (| | 2.2 Integral Equation Formulation. As already noted, the
""" bonded delaminated * solution to the problem in Fig.(B) makes no contribution to the
com ressfon stress free ’ stress intensity factors. The reduced problem shown in F@.i2
p () formulated and solved thereby providing the stress intensity fac-
- 1
[ _ o0+ | w0 |+0
bonded, delaminated, o8
compression compression
(b)
06
4= 6,/R
_____ g .1 rebtl»o —o 04
bonded, delaminated,
stress free tension 02
©
1 2 3 4
| reduced probleml /1
Fig. 2 A schematic of the superposition scheme Fig. 4 A plot of the displacement coupling relationship
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tors for the problem in Fig.(@). The interfacial crack between the

1
film and the substrate is equivalent to a continuous distribution of By(s)*x — as s—0, (15)
elastic edge dislocation$4]). A single elastic edge dislocation a \/g
distanceh below the free surface of the half-spa@ee., on the 1—
x-axis of the coordinate system depicted in Figu(a)Pcreates a By(s)— —— o(1-1%) as s, (16)
stress field in the surrounding material that is given by the Airy X E
stress function: The stress intensity factors are given by
oM 2byx(h—y)+b,[x*+(2h—y)y] o . 27s E
T 27(1-v) X2+ (2h—y)? Ki=lim——3—75By(s), (17)
s—0
byx—byy x2+y? ”
3% X
+ o] , 4 Vv2ms E
2 9 (2h—y)? @ K”:IimTTrmﬂx(s). (18)
where @X, y) is the Burger's vector for the dislocatida factor S0
of two missing from the expression fdr given by Stringfellow Note that by Eq(14) that ass—0,
and Freund has been incorporated h€i&5]). The stress field for
a single edge dislocation located at a positsoon thex-axis can By(S)— —Bx(S), (19)
be derived from Eq(4). With I
therefore the mode mix is fixed according to
d5t(5)
Bx(s)= (5) R
K| :I_ K|| . (20)
ddn(s)
By(s)= (6) The mode Il stress intensity factor for a steady-state edge delami-

on thex-axis a distance behind the crack tip, the stresses are

given in terms of the dislocation distributioB{(s), 8,(s))ds by

2 *d11(§) ”
ny(x): 2m(1—v) fo & Bx(s)ds+ fo ng(f)ﬁy(s)dS )
(1)
_ M ” * oA &)
ayy(X) = 20(1=1) fo 921(§) By(s)ds+ fo z By(s)ds|,
(8)
whereé=x—s and
64h%+ 16n*£2+ 16h%¢*
gll(g): (4h2+ 52)3 ’ (9)
—32h%+24n3¢?
918 = —anE a7 (10)
32h5—24n3¢?
921(§) = anE a3 (11)
64h°—48n*¢?
goA &)= anE a3 (12)

The single governing integral equation expressed gitfs) as
the unknown is obtained by imposing E®):

fo 9 5 (s)dst fo 914 )B,(s)ds

£
S f 0n(£)By(9)ds+ f ng) B,(9)ds),
(13)
where from Eqs(2) and (6),
By(s)= |:3><( F{ f Bx(m)dn|. (14)

It is known from linear elastic fracture mechanics ti(s)
has as~ 12

nation with zero friction and no roughness is

h
Ki=o \[5 (21)

and the energy release rate is given by Eg. Normalizing by
these values and applying
—v 2. 2
g= E (K7 +Kij), (22)

yields the following relationships for the energy release rate:

£-(3/T-(3]

The dimensionless equation shown in the Appendix reveals that
the solution is determined by three dimensionless parameters, i.e.,

K” Y oh(1-1?) A R
KT TTEr T T

Further details of the formulation, along with aspects of the nu-
merical solution scheme, are presented in the Appendix.

(23)

(24)

3 Results

The combined effect of friction and roughness on the mode Il
stress intensity factor is shown in Fig. 5. There, pIotquf/Kﬂ
as a function ofr are presented for various roughness levels and
two values of the coefficient of friction. When friction is present
without any roughness, the normalized stress intensity factor is
independent of the film stress. Its reduction below the frictionless
limit (K, /K% =1) is relatively small and is precisely in accord
with the results of Stringfellow and Freup8]. Combined friction
and roughness lead to a dependence of the stress intensity factor
on o such that the full effect of the roughness is attained when
o~2. Foroc=2, the effect of roughness df,, is pronounced.
Values ofR/| as large as unity cannot be ruled out and, indeed, are
to be expected when one or both of the materials are
polycrystalline.

The effect of friction and roughness on the normalized energy
release rate from E23) is plotted in Fig. 6 for the same two
values ofus . The competition between the reductiorkip due to
combined friction and wedging and the increaseKin due to

singularity at the crack tip. Far behind the tip the filmwedging(c.f. Eq.(14)) is evident. At sufficiently smallr, G/G, is

is in a state of plane strain extension. These conditions are decreased above the zero roughness limit due to the dominant

scribed as

Journal of Applied Mechanics

influence of wedging oK, . For u;=.5, G/G, exceeds the zero
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Fig. 5 Normalized mode Il stress intensity factor Fig. 6 Normalized energy release rate

roughness limit for allo if R/I=1. However, it is apparent that 0.3
there is a significant range &/l and o such that the combined
effect of friction and roughness reducgsj, by approximately 025
twice the effect of friction alone. Fqi;=.5, the maximum crack-

tip shielding corresponds tG/Gy~.7 for a roughness leveR/I 02
~.5 ando>2. For u;=1, the corresponding value #G,~ .4.
Examples of the normal stress distribution acting on the inter-
face behind the crack tip are given in Fig. 7. Roughness increases
the normal stress within a distance of about one film thickness
from the tip. It is this increase which provides greater frictional
dissipation and thereby diminishes the mode Il stress intensity

o-yy/o' 0.15_

0.1

factor. The normal stress becomes very slightly negative along 0.05

part of the interface at/h>5, but its magnitude is so small that L

there is no need to extend the formulation to account for a seg- 0

ment of the interface that is open. This condition has been

checked for the full range of parameters governing the solution. In x/h

addition, the monotonicity condition for the tangential crack dis-. . _ —

placement, which is necessary for consistency of the imposed fﬁ:c'g' 7 Normal stress at the interface for — p,;=1.0 and ¢=5.0

tion condition, was satisfied.

The reduction in the energy release réatd. Fig. 6 gives fur-

ther insight into the combined effect of friction and interface .

roughness. The simplest possible condition for crack advarite Concluding Remarks

based on crack-tip stress intensity would be the mode-independerResults of this study indicate that the mechanism of combined

criterion frictional sliding and roughness-wedging has an effect on the ap-
G=T (25) parent mo_dg Il fracture toughness that can be as much as .twice the

0 effect of friction alone. Toughness values as large as 2.5 times the

wherel' is considered as the separation energy for the interfacparation energy of the interface were predicted. The stress in-

Then, the apparent mode Il toughness for steady-state propagatemsity at the crack tip was found to decrease significantly with an

would bel'=G, sincegy is the overall energy release rate. Usingncrease in the amplitude of the roughness. It was also found that

the results of Fig. 6, one can plot the normalized apparent modehke presence of roughness at the interface induces a mode | stress

toughnessI'/T'y, as is done in Fig. 8 foR/| =.5. intensity that is at most equal to the mode Il stress intensity for the
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2 1+z
X= 1—7

r/l_; 1751

When the displacement coupling relationship given by @9 is
used, Eq.(13) can be expressed in terms of dimensionless vari-

1.5

r ables as
1.25:— 1 kll(Z,t)(l—Z) k21(Z,t) d
: LB —0(1-1  HTa-02
. ot
O-h(l_vz)/El :_RJ B(t)eX[Z[—U'5(t)]{2(;L_2(_ ’)2
-1
290:58 Normalized apparent mode Il fracture toughness for R Koo 2,1)(1—2) ; 5)
M=o |7
for the unknown

range of roughness parameter values considered. Thus, what is
generally considered a pure mode Il phenomenon is in fact mixed _ 1+t
mode at the tip when the interface is rough. B(H)= a(1-1?) Bx| h 1—t)’ 27)

In addition to the roughness parameter, the analysis reveale
that the normalized energy release rate depends on one import4i€e
dimensionless stress parametet= ch(1— v?)/El. Consider a _ R
film whose thickness is about one micron and supports a stress to R= T (28)
modulus level of about .01. A roughness half-wavelengtbn the
order of ten nanometers would produce a value d¢drge enough _ och(1-?
to significantly affect the apparent interface toughness. Such a =T (29)
wavelength is fully consistent with the underlying assumptions of
the model and the analysis. E t 1+ 7 2

Previous models that considered only frictional sliding showed S(t)= ?f ,BX( hr)?dr, (30)
that material mismatch can further increase the apparent mode I o(1=v ) 7/ (1=7)
fracture toughness when the film is more compliant than the sub- 2(z—1)
strate([3]). It is expected that the same trend would be observed kn(th):gn( h—), (31)
when roughness effects are considered in combination with fric- (1-2(1-1)
tional sliding for the bimaterial problem, yielding apparent mode 2(z-1)
Il fracture toughness values even larger than those predicted by klz(Z,t)=921(h—) , (32)
this study. For an interface with an array of contacting asperities, (1-2)(1-1)
a more realistic representation of the coefficient of friction can be 2(z-1)
expressed as the sum of a constant term and a term that is propor- Kyy(Z,1) :912( h —) , (33)
tional to the dilatancy of the interfacg6]). For the roughness (1-2)(1-1)
model assumed in this paper, the dilatancy term is positive. Thus 2(z-1)
incorporating a more realistic friction model would result in addi- kzz(z.t):gzz( h —) (34)
tional frictional dissipation and a corresponding increase in the (1-2)(1-1)
apparent mode Il tc_n_Jghness. The_results of this model in conjuRgre dimensionless end conditions are expressed as
tion with these additional mechanisms that enhance the toughness
shows that it is indeed possible to predict mode Il toughness val- 1
ues that begin to become comparable to those found in experi- B(t)x ——= as t——1, (35)
ments by modeling the combined effect of frictional sliding and 1+t
roughness-wedging at the interface. Furthermore, the strong cou- B(H—1 ast—1. (36)

pling between frictional sliding and roughness-wedging shows

that both effects should be considered in combination when mod-Any real continuous function defined on the interyall, 1]

eling the delamination of compressed thin films. can be approximated by a finite linear combination of Chebyschev
polynomials of the first kind. Thus the dislocation density can be
expressed as
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Appendix ing the integral equation & values ofz produces atN X N linear

To facilitate numerical solution, the domain of integration isystemAx=b where the components of tiX 1 vectorx are the
transformed frons,xe[0,°) to t,ze[ —1,1] by setting expansion coefficients. This linear system can be solved for the
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unknown coefficients which can then be used to construct teet ofN values ofz for which good convergence was found. Con-

dislocation density, stress intensity factors, and energy releagsgence to six decimal places was achievedNer12 andM

rate. =48,000 for the case whepe;=0 andR=0 which has a known
The components of thll X N matrix A and theNx1 vectorb  analytical solution. These values bf and M were used for all

are singular integrals, the integrands of which are expressible igghsequent calculations involving nonzerpandR.

form that permits numerical evaluation using Gauss-Chebyschev

sums for singular integrals derived by Erdogan and Gupia

Convergence must be achieved for the individual Gausl%[&ferences

Chebyschev sums used to evaluate the integrals by choosing

number of terms in each sunyj, sufﬁcienﬂy |arge and for the [1] Yu, H., He, M. Y., and Hutchinson, J. W., 2001, “Edge Effects in Thin Films,”

. . . . i Acta Mater., in print.
ChebySCheV expansion by ch003|Ngsuff|C|entIy Iarge' Numeri [2] Hutchinson, J. W., and Suo, Z., 1992, “Mixed Mode Cracking in Layered

cal error in the linear system increases wihand for someN Materials,” Adv. Appl. Mech.,29, pp. 63—191.
surpasses the accuracy gained. Thus an optimal valbeexists [3] Stringfellow, R. G., and Freund, L. B., 1993, “The Effect of Interfacial Fric-
and was determined. tion on the Buckle-Driven Spontaneous Delamination of a Compressed Thin

B Film,” Int. J. Solids Struct. 30, pp. 1379-1395.
The Gauss-Chebyschev sums can only be evaluated at the ZerPﬁ Rice, J. R., 1968, “Mathematical Analysis in the Mechanics of Fracture,”

of the (M —1)th Chebyschev polynomial of the second kind. If * " gracture 2, pp. 191-311.

M/2N is a positive integer, the zeros of theh Chebyschev poly-  [5] Dundurs, J., 1969, “Elastic Interaction of Dislocations With Inhomogeneities,”
nomial of the first kind are a subset of the zeros of tié ( Mathematical Theory of DislocationSME, New York, pp. 70-115.

_ 1)th Chebyschev polynomial of the second kind. This fact WaS[G] f/l(ftt’ R. F., 1963Principles of Soil Mechani¢csAddison-Wesley, Reading,
utilized to evaluate the Ga!JSS'ChebYSCthV sums_ at the zeros of ﬂﬂﬂ Erdogan, F., and Gupta, G. D., 1972, “On the Numerical Solution of Singular
Nth Chebyschev polynomial of the first kind, which was the only  Integral Equations,” Quart. Appl. Math., pp. 525-534.
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A Complex Potential-Variational
Method for Stress Analysis of
e.vadenci | Unsymmetric Laminates With an
A- Bt § Flliptical Cutout

Department of Aerospace and Mechanical

Engineering,
The University ogf Anzong, A combined complex potential-variational solution method is developed for the analysis of
Tucson, AZ 85721 unsymmetrically laminated plates with finite planform geometry, subjected to arbitrary
edge loads, and with an inclined elliptical cutout. This method uses complex potentials
M. P. Nemeth and their Laurent series expansions to reduce the potential energy of a plate to a contour
Mechanics and Durability Branch, integral that is evaluated numerically by the trapezoidal rule. A variational statement of
NASA Langley Research Center, equilibrium is applied to the potential energy to obtain a linear system of equations in
Hampton, VA 23681-2199 terms of the unknown coefficients of the Laurent series, whose solutions yield the stress
and displacement fields for a given problem. This approach represents a computationally
efficient alternative to boundary collocation procedures that are typically used to solve
problems based on complex potential theory. Comparisons are made with corresponding
results obtained from finite element analysis for a square unsymmetrically laminated plate
with a central inclined elliptical cutout and subjected to biaxial tension. The results
confirm the validity of the solution methodDOI: 10.1115/1.1379528
Introduction plex potentials in the analysis. As a result, complex potential

nsvmmetrically lamin Mposi r " r ntinuiteory has been applied to the in-plane and out-of-plane response
Unsymmetrically laminated composite structures are continu p’i?blems separately. For example, Prasad and Shijpsolved

to receive attention in the search for ways to enhance structu

performance by exploiting material anisotropy. A fundamentglrlle bending problem for a symmetrically laminated plate with an

structural element of this class of structures, which is of gre§tiPtical cutout. This study used a one-term solution to determine
practical importance, is the flat laminated plate with one or mof@€ Stresses around a cutout in an infinite plate subjected to far-
cutouts. Structural elements of this type often appear as comp§!d bending moments. Later, Shuart and Praszidsolved the
nents of aircraft wing spars and ribs. Behavior trends that shdgnding problem for a symmetrically laminated plate with finite
the effects of unsymmetrically laminated construction on thi§ngth and width, with an elliptical cutout, and subjected to edge
class of structural elements are essentially unknown at the pres@@ments by using their previous formulation and combining a
time. Thus, it is beneficial to have an efficient special-purpodeurent series approximation for the stresses and displacements
analysis method that can be used to conduct extensive paraméti® a boundary collocation method. In that study, the boundary
studies in a timely manner and at relatively low costs. Althouggpllocation technique used a least-squares minimization proce-
the finite element method and the boundary element method dtée. Owen and Klan@3] and Britt [4] applied a similar proce-
capable of determining the response of general plate configugkte to the in-plane stress analysis of symmetrically laminated
tions, like an unsymmetrically laminated plate of general plarcomposite rectangular plates with finite length and width and sub-
form shape and with a cutout, they often require extensive cofected to compression, shear, and a combination of these loads.
putational effort to obtain accurate results. One example thatComplex potential theory has also been combined with other
typically manifests this computational difficulty is a plate with anethods to solve problems. For example, Chghformulated a
very narrow cutout that is used to simulate a crack. solution for a plate with finite dimensions and a cutout and sub-
An analytical method that appears to be suitable for inexpejected to bending and twisting moments by combining Laurent
sive parametric studies of the structural response of flat unsygeries approximations for the complex potentials with an energy
metrical laminated plates with one or more cutouts of generglethod. In this approach, the energy method is used to eliminate
shape and with a general planform shape involves the use of caffe need for a boundary collocation procedure to determine the
plex potential theory. In the past, complex potential theory hagknown constants in the Laurent series. Owgis Jones[7],
been used successfully for the stress analysis of isotropic plages and Klanfg], and Britt[9] solved the buckling problem for
and symmetrically laminated composite plates with cutouts. Lamymmetrically laminated rectangular composite plates with finite
nated plates of this class exhibit, at most, anisotropy in the form @i, gih and with a cutout by combining complex potential theory
coupling between in-plane extension or contraction and shear, the Rayleigh-Ritz method. In these studies, the prebuckling
between pure bending and twisting deformations. For this classQfess field was obtained by using Laurent series approximations

platels,dthe |nl-)plan(|a a(;“.j gendlr:jg rt?spondses are corlnptletely H8F the complex potentials and boundary collocation procedure.
coupled, can be solved independently, and require only two Copﬁien, the two-dimensional stability functional, defined over a

Comiibuted by the Anplied Mechanics Division ofE A © doubly connected region, was integrated numerically to form the
ontributed by the Applied Mechanics Division offf AMERICAN SOCIETY OF  : : : : :

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- “n_ear and g_eomet_nc_ stiffness matrices of the _bUCk“ng pmblem'
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 61 [10] applied a similar approach to an analysis for the dynamic
1999; final revision, Jan. 11, 2001. Associate Editor: V. R. Kinra. Discussion on tigtability of plates with an elliptical cutout.

paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of ¢ i H
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will BeCker[ll] was the first to analyze unsymmetrlcally laminated

be accepted until four months after final publication of the paper itself in the ASMﬁompOSi_te plates, inﬁ_nite 'in extent, Wit_h a crack-shaped cutout,
JOURNAL OF APPLIED MECHANICS. and subjected to far-field in-plane loading by using complex po-

Journal of Applied Mechanics Copyright © 2001 by ASME SEPTEMBER 2001, Vol. 68 / 731



Zz . are shown in Fig. 1. The global displacement components in the
I / X, Y, and Z-directions are denoted hyy, uy, anduz, respec-
tively. The unit vector that is normal to the edges of the plate is
denoted byn, and its components in théandY-directions areny
andny, respectively. The plate is made Kfspecially orthotropic
layers, and each layer has an orientation angjle that is defined
with respect to the globaX- axis (Fig. 1). Moreover, each layer
has thickness,, elastic moduliE, andE;, shear modulu§, 1,
ny and Poisson’s ratio ¥, whereL andT are the longitudinalfiber)
. and transverse principal material directions of a given ply, respec-

X tively.
Ply orientation
angle, 0,

In the derivation of the equations that govern the plate re-
sponse, it is convenient to formulate the analysis in terms of the
Fig. 1 Planform geometry, coordinate systems, and loading
conditions for laminated plate with an inclined elliptical cutout

principal coordinates of the elliptical cutous, y, z), because of

the use of mapping functions. In this case, the displacement com-
ponents in the, y, andz-directions areu,, u,, andu,, respec-
tively, and ¢,,t,,t,) and (m,,m,) respectively denote the exter-
nal resultant forces and moments in ilxey, z) coordinates. The
displacement and the traction components that are defined in the
cutout coordinate system are related to those defined with respect
to the global structural coordinates by the transformation matrix

T,
cosB sinB
tential theory. In his analysis, Becker introduced four independent T= . . (1)
complex potentials satisfying the governing equations identically, —sing cosp

and used a one-term expansion for each of the four complex rg) .
tentials. Later, Beckef12] examined the behavior of similar S0lution Procedure
plates subjected to far-field transverse shear loads. The goal of this section is to develop an analytical method for
The goal of the present study is to develop a method that is welktermining the displacements and stresses in unsymmetrically
suited for parametric studies and that accurately predicts the striggainated composite plates, with finite dimensions and an ellipti-
and displacement fields in initially flat, unsymmetrically lamical cutout, that is amenable to numerical solutions. Toward this
nated plates, with finite planform dimensions and an ellipticgloal, the principle of stationary potential energy is used in con-
cutout. Toward this goal, the present study combines Beckefisction with complex potentials that satisfy the three plate equi-
complex potential analysis with Chen’s variational approach. Witlbrium equations identically. With this approach, the potential
this approach, the total potential energy of the plate is expressatergy of a plate is reduced to a contour integral. The complex
solely as a contour integral, and the need for a boundary collogsstentials are expressed as truncated Laurent series that contain
tion procedure is eliminated. This approach enables computatiamknown complex constants. The boundary conditions are satis-
ally efficient solution of boundary value problems for rectanguldied in an average sense by requiring the first variation of the
and general polygonal plate geometries by simple numerical in{sotential-energy contour integral to vanish, thus resulting in a sys-
gration of the potential-energy contour integral. Moreover, a magem of equations to solve for the unknown constants. The details
ping function is used to transform the elliptical cutout boundary tef this solution procedure are as follows and are based on the
a unit circle in order to further simplify the numerical analysis. classical theory of laminated plates, which neglects transverse-
In the remainder of the present paper, details of the analysisear deformation.
method are presented and results from this approach are disThe total potential energy of a laminated plate that is subjected
cussed. First, the boundary value problem is defined. Next, ttieedge loads is expressed as
analysis details and numerical solution procedure are described.
Then, results for a square laminate with an inclined elliptical cut- T=U+V 2

out are presented. in which 2/ and V represent the strain energy in the laminate and
- the potential energy due to the external edge loads, respectively.
Problem Definition The strain energy is expressed as

The general boundary-value problem considered in the present 1
study consists of a thin polygonal plate with an elliptical cutout U= _f STedA ©)
(Fig. 1). The elliptical cutout, which can be located anywhere N

inside the exterior plate boundary, has a semi-major axis and a .
semi-minor axis of lengtla andb, respectively. The special casesVNereA represents the doubly connected planform ddemain

of a circular cutout and a line-shaped crack are givea sy and of the laminate shown in Fig. 1. The vectarande represent the

a=0 orb=0, respectively. Two coordinate systems whose origiriréss resultants and strain components as

coincide with the center of the cutout are shown in Fig. 1. The ST=I/Now Nov Now Mow Moo M 4a

global structural coordinates are given 0 Y, Z) and the prin- {Nooc Ny Ny Mo My Moy} (42)

cipal coordinates of the elliptical cutout are given(yy, z). The € ={Uyx Uy y Uxy Uy x, = Uyxy, —Uzyy, = 22Uz}t (4b)

orientation of the cutout axes is defined with respect to the global1 . . .

structural coordinate frame as defined by the argjle where a subscript after a comma den_otes differentiation and the
The unsymmetically laminated plate is assumed to be flat pri cltlonsux, uy, andu, relpresfer;]t thcle |n-pI%ne| and out-of-plgne

to loading, and the exterior edges of the plate are subjected to bBtAP lacer_nelntls, r_especttl}ve Y, 0 ht ep allte mi pdai'g' dl) Base

external resultant forces and bending moments. The external ?é']icassma damlnz(ajtebt eory, the in-plane and bending stress re-

sultant forces include componeris, ty, andt,, and the bending Sultants are defined by

moments include components, andmy . The external resultant K

forces and moments are defined with respect to (KeY, 2) N, Noo N, = ¥ ol Nz —z,_,) (5a)

global structural coordinates, and their positive-valued directions (N Nyy N} kgl (o oy Oy HE 2
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1 X wherea,, by, ¢, d, e, andf, are unknown complex con-
{Myx,Myy M, b= = 2 {0 ,cri,ky)) wU(xky)}(Zﬁ—Zﬁfl) stants. Then, the in-plane displacement components are expressed
2z as linear combinations of complex potentia,(z,), with k
(Bb) =1, 2, 3, 4, in the form
in which z, andz,_, define the distance to the top and bottom 4
surfaces of thekth layer with respect to the midplane of the (uy,u)=2R 2 (Pk,»Gi) Py (13)
laminate. k=1
The stress resultant and strain vect®ande are related to each where
other by
D (z)= z,)dz. 14
—Ce ©) k(Z) f‘Pk( Wwdz (14)
where C, defining the laminate material properties, is compose%'m”arly’ the out-of-plane defiection is expressed as
of the extensional, membrane-bending coupling, and bending 4
stiffness matricesA, B, andD, u,=2R kZl Fi(zi) (15)
oo A B . @) where
° P ) f D (z)d (16)
F(z)= z,)dz,.
The expressions for th&, B, andD submatrices can be found in K K

textbooks(e.g.,[13]). The desired form of the strain energy isBy substituting from Eqs(13) and(15) for the displacement com-
obtained by substituting fas ande from Eq. (4) and then apply- ponents in Eq(4b) and using the chain rule for partial differen-

ing Gauss’ theorem. This action yields tiation, the strain vectoe is expressed in terms of the unknown
1 complex constants as

U= f{(Nxxux"— nyuy) Nyt (Nyyuy+ nyux)ny_(Mxxuz,x ¢
2Jy e'=2R kzl {Pi. ks Pt i — L= i, — 2 o |-
+ MUy )Nyt (MU, o+ MygU, )Ny + (Mo, + M,y uny (17)

1 Then, the unknown coefficients,, b, ¢, di, e, andf, are
+(Myyy+ My oun dl— > f {(Nywxt Nyyy) Uy +(Nyy expressed in terms of the unknown constagnts gy, and wy by
A substituting Eqs(12) and(17) into the constitutive relations, Eq.

+ Nyy,y)uy+ (Mxx,xx+ ZMX)’,XY+ Myyyyy)uZ}dA (8) (6)' * [ A A A B B B T

in which | represents the boundary of the doubly connected plan- ay " 2 1 H © 1
form areaA. The potential energy, arising from the external by Az Az Ax Bz Bz B
irseselj(lg:g; ;grdcgss and moments acting along the exterior boundary | _ Ais Ay Ags Bin By Bgs
di Bir Biz Big Diz Dip Dy

V=- f(txux+tyuy+tzuz— mu, ,—myu, )dl. 9) ?E Biz Bz B D1z Dz Dz

l L Bis B2 Bes Dis Do D66_

In the present study, only the external plate boundary is subjected

to external loads. Enforcing the first variation of the total potential P
energy,ém, to vanish results in the well-known equilibrium equa- ik
tions of classical plate theory % Prakt i with k=1.23.4 (18)
— 1 1y, .
Ny x T ny,y:0 (108) —,LLE
Nyy.xt+Nyyy=0 (1) ~2uk
Equation(18) is then substituted into Eq12) to obtain the stress
My xx T 2Myy 5yt Myy vy =0. (1)  and moment resultants in terms of the remaining unknopps,

nohe andu, . Substituting these expressions for the stress and mo-
ré]%e_nt resultants into the equilibrium equations given by @)
results in a system of algebraic equations given by

The next step in the solution procedure is to derive a solution t
satisfies these equations identically and reduces the potential
ergy to a contour integral. As suggested by Bedldt, the solu-
tion to these coupled equilibrium equations is established by i0A11+ tiA1e) Pt (Arot miAze) At (Arst miAse) (Pritict O
troducing four linearly independent complex potentiatg(z,)

2 —
with k=1, 2, 3, 4. These potentials are functions of the modified ~ — (B11 #kB1e) = (B1ot 11kBag) ttic— (Bist miB2e) 2/4¢=0
complex variablesz, , defined by (19)

z=X+uy with k=1,2,3,4 (11) (AseT miA12) Pt (Aget miAz2) Attt (Asst wiAoe) (Prik T dk)
whereuy, po, us, andu, are complex constants that must be  — (Bigt uB12) — (Bas+ 1uiB2o) i — (Begt uiBe) 2/4k=0
determined. First, the stress and moment resultants are expressed (1%)

as linear combinations of these potentials in the form ) )
(B11+2uBagt uiB12) Pt (Biat 214 Bast 14iB22) i+ (Bas

(Nyx:Nyy ,Nyy , My, My ,Myy)
. +2Best 147B26) (Pt A) — (D11t 214D 16t gD 1)
=2 R{E (ay,by,cq,dy e, f)ex| with k=1,2,3,4 ~ (D 1o+ 21Dt gD 2o g — (D 1ot 24 Digs
ic1
(12) + kD 2e) 2 =0. (1%)
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These equations are linearpp andq, but nonlinear inu, . Thus,

considering the first two of these equations permits the solution

for p, andqy in terms ofuy as

Ri:u'ik
i=0
p=—7—", (209)
E Timi
=0
5
> Sk
i=0
k= (200)

The explicit expressions fdR;, S;, andT; are given in the Ap-
pendix. Substituting these expressionsgpandqy into Eq.(19c)

7+ \zi—a%— uib?
a— | /Lkb

in which a andb are the major and minor axes of an ellipse and

i=—1. The sign of the square root term is chosen so [that

=1; that is, the domain of the plate is mapped onto the exterior of

the unit circles. Inverting the mapping function provideg &)
as

, k=1234

&= (25)

Sk
Z,= wi (&) =Tréx— Z (26)
in which
1 .
fk=§(a*wkb). (279)
1 .
sk=§(a+|,ukb). (20)

yields the characteristigpolynomia) equation for the generalized The unknown complex coefficients,, and 8, in Egs.(22)—

complex variableg, in terms of u, as

(1)

(24) are determined by requiring the first variation of the total
potential to vanish, i.e§7=0. This step yields a system of linear
algebraic equations involving boundary integrals that must be
solved numerically to obtaim,, and B, for plates with finite

8
Z |/'Lk
- planform geometry.

The coefficients of this polynomial are real-valued constants lead- ]
ing to distinct roots, and are given in the Appendix. The compléXumerical Procedure

parameterg (k=1, 2, 3, 4 and their complex conjugates are the | thjs section, the matrix form of the potential-energy contour

roots of this characteristic equation, i.@us= w1, weg=p2, M7

=3, and ug=pu,. Determination of these roots leads to thearl])ply the matrix operations, the following quantities are defined:
expressions for the stress and moment resultants that satisfy t

in-plane and bending equilibrium equations for arbitrary complex . ngk‘
potentials, thus rendering the area integrals in @J.to vanish "D”k:w’(fk) (28)
from the expression for the total potential energy, Thus, the K
boundary value problem has been transformed into a form that Or =& (29)
involves only a boundary-contour integral and four unknown p
complex potential functionsb,(z,) with k=1, 2, 3, 4. The aux- §n+1 Sk g”‘l In|=2
iliary unknown complex potential functions(z,) andF(z,), n+1 n—1° =
are obtained by their differentiation and integration, respectively.
These analytic functions, related do(z,), are assumed in the * _ k_fk_s Ing&, n=1 (30)
series form in terms of mapping functiodg as nk 2 ksk
N Skfk_2
- rln &+ , h=—1
P60= 3 [ndl+ Bucki ") (22) | nat
=
such that
This form of ®,(&,) results in the potentials foF,(&,) and N
o (&) as
(&) D=3, (it B ) (318)
1 1 n=
Fr(&k) = aax Erkfi_sklnﬁ + Bk Eskglzz_rklnfk) N
N . =2, (Bt Bt (31b)
v “"k(n+1 I TS ) N
1 Fk=21 (@nF it Bk X ni)- (31c)
A=
NG " ——s ” 23
'Bnk( ki n+ 1 i (23) Considering first the expression fidi, in Eq. (12) and substitut-
and ing from Eq.(31b), the following term can be rewritten as
o > ae={INE Ty + CUNET B+ +(NINE Ty,
o= E AL S B CO N
+ NGB (32)

where a prime denotes differentiation with respectéto The

functionsw, (&) are the inverse mapping &f . where

The mapping functionsg, (k=1, 2, 3, 4, map an elliptical (MN*T— * * * *
cutout in the(x, y)-plane onto unit circles in the four complex Nie = {8107 18207 189073 124 0na} 33)
planes that correspond to the complex varialdgs In this analy- & ={an,an,ans, gt (34a)
sis, the mapping functions for an elliptical cutout, introduced by
Lekhnitskii [14], are employed and are given in the form Bn={Bn1,Bn2:Pnz,Bna} (34b)
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and the superscript denotes matrix transposition. The same term

can be rewritten as
4

2 aer=Ni g (35)
k=1
in which the vector\}, andq are formed as
N:XT 1)N*T (— l)N*T (Z)N*T (— 2)N:);I', ...... ,
NG, NG (36)
qa'={e1.Bl.0.B;, ", ay . B} 37)

With these equations, the stress resulfdpt takes its final form
as

N=2 R[N}/ q} (38a)
or
Noo= N3 a+ N3 (38)
or
No= N5 (39)
where the vector!ilxX and@ are defined as
NE= NG N (40)
and
q'={a".a"} (41)

{:ulq):l uuzq):z qu):s 1M4(D:4} (43f)

in which prime denotes differentiation with respect to its argu-
ment. By using Eq(39) and the analogous expressions for the
other stress resultants and displacement components, the
potential-energy contour integral is expressed as

n), *T_
( uy,=

= { jgsddl] ﬁ@pdl (44)
whereS andQ are matrices ang is a vector given by
S=L(Nynyt Niyy) (N Ny yny ) (M i+ Mgy y 1

+ My + My 1) (= Moo= Migny ) (= Mygn, = Myyn, )]
(459)

Q=[0, 0, 0, —0,, —0,] (450)

PT={tye by trz, Myx,Myyt. (45c)

Requiring the first variation of the total potential to vanish pro-
vides the equilibrium equations in the form

KG=F (46)

in which ¢ involves only the unknown coefficients,, and B,
and their complex conjugates. The known coefficient malttix
and forcing vectoF in Eq. (46) are given by

in which the overbars denote complex conjugation. The remaining

stress resultants and displacement components can be obtained by

replacing the symbd\,, with the appropriate one in E¢B9) and
by using one of the following corresponding expressions:

(n)N;yT:{bl‘P:l b2¢hs b3ens Dagrat (42a)
(n)N:;—:{Cl‘P:l 1C2@n21C3@h3 ,Cahal (420)
(MM ={d1em1 02002 30l daia} (42c)
(n)M*T {€1071,€2002 183003 ,€a¢a} (42d)
M3 ={f10m . F20m Faohs faghs} (42¢)
MU T={p @} PPl P3Pl PaPls} (42f)
(n)U*T:{Qﬂ);l HePL P EL NS L ot (429)

MUy T={F} Fry . Fra Fhal- (42n)

The termaM,, 4,

the symbolIN,, with the appropriate one in E¢39) and by using
one of the following corresponding expressions:

d d d d
T 1 2 3 4
(M= { 1@61‘ ’w_é(P”‘; ,w—é%é‘ 1E¢é§] (439)
f f f f
T 1 2 3 4
My= op Ol et o end ,w—iwéi] (430)
(MM*T = fips % famo % faus % famq %
XY,y w:,L Pn1 s wé Pn2 > wé Pn3 > w:1 Pn4
(4%)
e e e
(Mg *T 1M1, C2oM2 . CG3M3 . C4Mg
Myy,y Py Pn1 > ) Pn2 > w} Pn3 > v, Pna
(43d)
{(Dnll n21 n3 ,CI):4} (436)

Journal of Applied Mechanics

_ ) Myyxs Myyy s l\/_Iyy'y, (Vo anduz_,y that appear _
in the potential-energy contour integral are obtained by replacing

1 “n PN
=5 fﬁ(SQTJr QShydl (47a)
|
= % Qpdl. (47)
|
Also, a constraint equation
4
MkPr— Gk
Re{ kZl aiab =0 (48)

is used to eliminate the rigid-body motion of the plate from Eqg.
(46) by requiring the constant term in the rotation field, given by

Q=u,,—uy (49)
to vanish. In addition, the two constraint equations
4
Im‘ k}‘,l Skalk} =0, (508)
4
Im( gl rkﬁlk] =0 (50b)

are used to ensure the single-valuedness of the logarithmic terms
in Eq. (23) that result in single-valuedness of the out-of-plane
displacement field.

These three constraint equations are directly invoked into the
governing equations by using Lagrange multipliers. The remain-
ing step needed to solve E@L6) is to compute the contour inte-
grals, which include the exterior plate boundary and the interior
cutout boundary, in Eq447). In the present study, the contour
integrals are evaluated by using a trapezoidal rule of the form

L L 1
f f[X(l),Y(l)]d|=§j f{x(7),y(7)]dn
0 -1

K

L
=2, Hif[x(70.y(md]  (51)
where
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Fig. 3 Deformed geometry of a square [%45 deg] laminated
plate with an elliptical cutout inclined at 45 deg and subjected
/ to biaxial tension
Sy
g&%jgcteﬁigt%?gzﬁrtgﬁng h an inclined eflptieal cutout and tions in the stress resultants @&t 0 deg and 180 deg. The maxi-
mum values ofN,,/o and M,,/(ogh) are —4.96 and .74,
respectively.
‘The fidelity of the present method for this particular set of
2l problem parameters is illustrated in Fig. 6 by a plot of the out-of-
'—:f dl, 7= f‘l plane displacement at the cutout edge versus the ahdtepar-
ticular, five curves are shown in the figure that correspond to
1 values ofN=1, 3, 5, 10, and 15, in whiciN is the number of
Ho—{2 for k=0 andK :2_k_1 (52) 'erms in the Laurent series defined by E8d). The values oN
k C T =1, 3, 5, 10, and 15, correspond to the 16, 48, 80, 160, and 260
1 for 2<k<K equations that are used to obtain solutions to @&). An addi-

with K denoting the number of intervals on the contbuin this  tional curve is shown that corresponds to results that were ob-
equationx(») andy(#») are the parametric equations of the con-
tour | in which —1<#%<1. The functionf is arbitrary in that it
represents symbolically the integrand of any integral used in the

construction of Eq(47). N./%
0.034
7]
Numerical Results o8 %s.
Results are presented in this section for a sq(iaré5 ded (R 0

unsymmetrically laminated plateA(=L =4 inches) that is sub-
jected to a biaxial load o&y=1 Ib/in. and that has a relatively
small centrally located elliptical cutodFig. 2). The elliptical cut-
out is inclined at an angle g8=45 deg and has a semi-major
axis, a=0.5inch, and semi-minor axi9y=0.2 inch. These di-
mensions correspond to a cutout aspect rhfi@a=0.4, a semi-
major axis-to-plate-width ratia/W=0.125, and a plate width-to-
thickness ratioL/h=400. Each layer of the two-layer plate is
0.005 inch thick and is specially orthotropic with material prop
erties E, =19x 10° psi, E;=1.9x10° psi, G, +=0.9x 10° psi,
and v 1=0.3. The total plate thickness is given bk
=0.01inch.

The roots of the characteristic equation, E2{l), for this prob-
lem were determined to beu;=—0.548670.83604, u,
=3.38364, u3=0.29554, u,=0.54867%0.83604, us=puq,
MUe= Mo, M7= 3, andug= w,. The deformed shape of the lami-
nate is shown in Fig. 3 and is essentially a saddle-like sha
because of the bending-stretching coupling. Contour plots of tl
nondimensional in-plane shear stress resulthipf,/ oo, and the
nondimensional twisting stress resultakt,, /(oyh), defined in
terms of the global coordinate systéfig. 1) are shown in Figs. Fig. 4 Nondimensional in-plane shear stress resultant distri-
4 and 5, respectively. These results indicate a central point iftion in a square [+45 deg] laminated plate with an elliptical
inversion symmetrypolar symmetryat the origin and concentra- cutout inclined at 45 deg and subjected to biaxial tension
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M, (o, h) Table 1 Comparison of stress resultants at the cutout edge
- given by =90 deg for a square [+45 deg] laminated plate with
“0.005 0.0, an elliptical cutout inclined at 45 deg and subjected to biaxial

tension
N,, (Ibfin.) M,, (Ib-in.fin.)
N=1 1.3875 0.0117
N=3 1.3330 0.0106
N=5 1.3050 0.0100
N=10 1.3060 0.0100
N=15 1.3058 0.0100
FEM 1.3276 0.0099
5
2
g o
5\ % scribed by Barut et a[.15]. The results in Table 1 indicate differ-
ences of less than five percent fdg, and 18 percent foM,,, for
?a,a N=1. ForN=5, all differences are less than 1.5 percentNgy,
and 2 percent foM,,. This good agreement with the shear-
deformable finite element results at these two plate locations and
3%% the fact that the present method is based on classical plate theory
2% =3

pected, for a very thin plateL{(h=400).

Results are presented in Figs. 7 and 8 that show the nondimen-
sional out-of-plane displacement/h and the nondimensional
bending moment resultarl ,,/(ooh), respectively, along the
edge of the cutout. For these results, all the problem parameters

J ' suggest that transverse shear deformations are negligible, as ex-

Fig. 5 Nondimensional twisting stress resultant distribution in are identical to those described in the beginning of this section
a square [%45 deg] laminated plate with an elliptical cutout in- except for the cutout inclination angJg Seven curves are shown
clined at 45 deg and subjected to biaxial tension in Figs. 7 and 8 that correspond to values@sf —45 deg,—30

deg,—15 deg, 0 deg, 15 deg, 30 deg, and 45 deg. Location around

the edge of the cutout is indicated by values of the amg(Eig.
tained by the finite element analysis. The finite element model fay.
one quarter of the plate had 3150 elements with 1656 nodes reThe results in Fig. 7 for the out-of-plane displacement field
sulting in 9720 degrees-of-freedom. Comparison of the curvelow a family of oscillatory curves that exhibit a phase shift and
shown in Fig. 6, which are coincident, indicates remarkable agregrowth in amplitude as the cutout inclination angbedeviates
ment, even foN=1. from O deg. The maximum amplitude of the displacement along

Results are also presented in Table 1 that give the stress resthle cutout is predicted foB=*=45 deg. Each of these curves

antsN,, and M,, at the edge of the cutout and 890 deg. exhibits two upward peaks and two downward peaks that shift
Similarly, results are presented in Table 2 that diyg andM,, at  farther away fromg=45 deg as the magnitude of the cutout in-
the edge of the cutout and &&=0 deg. In both of these tables,clination angle increases.
the stress resultants are referred to the loxay) coordinate sys-  The results in Fig. 8 for the bending stress resultant also show
tem (Fig. 2 and results are given that were obtained from a finita family of oscillatory curves that exhibit a growth in amplitude as
element analysis and from the present analysis Withl, 3, 5, the cutout inclination anglg3 deviates from 0 deg. Consistent
10, and 15 in Eq(31). The finite element solutions were obtainedvith the results for the out-of-plane displacements, the results in
by using a constant-strain, shear deformable shell element #ég. 8 also show the maximum amplitude {8 =45 deg. Fur-
thermore, the results in Fig. 8 also show that the curvesgfor
#0 deg have two positive and two negative peak values that
generally have different magnitudes. In contrast, the curvesfor
=0 deg has two positive and two negative peak values that have

-]

——sa——— N=1

———— N=3

e —o— N=5 the same magnitude.
———— N=10
——e—— N=I5 .
6 FEM Conclusions
5 A solution method for the analysis of unsymmetrically lami-

nated plates with finite planform geometry and with an elliptical
cutout has been presented. This method uses complex potentials

Out-of-plane displacement, 100(w-w(a,0))/h
S

3.
Table 2 Comparison of stress resultants at the cutout edge
2] given by 60=0 deg for a square [%45 deg] laminated plate with
an elliptical cutout inclined at 45 deg and subjected to biaxial
tension
1<
Ny, (Ib/in.) Myy (Ib-in./in.)
OB 5 90 45 0 45 90 135 180 N-1 100342 ~00144
8 (degrees) N=5 10.3622 ~0.0150
N=10 10.3723 —0.0150
Fig. 6 Nondimensional out-of-plane displacement around the N=15 10.3808 —0.0150
edge of an elliptical cutout inclined at 45 deg and subjected to FEM 10.2400 —0.0150

biaxial tension
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. 0
44 Cutout inclination angle, =45

Out-of-plane displacement, 100(w/h)

-24

-3

-4

'5 T T

80 135 do0 45 0 45 90 135 180
6 (degrees)

Fig. 7 Effect of elliptical cutout inclination on the nondimen-
sional out-of-plane displacement around the edge of the cutout
for a square [+45 deg] laminated plate subjected to biaxial ten-
sion

Circumferential moment, Myy/(c,h)
(=)

0
Cutont inclination angle, B:45

-180 -135 -0 45 [\ 45 90 135 180
0 (degrees)

g

Circumferential moment, Myy/(c, h)

-1B0 -135 -do As 45 90 135 130

0
(b) 0 (degrees)

Fig. 8 Effect of elliptical cutout inclination on the nondimen-
sional bending stress resultant around the edge of the cutout
for a square [*45 deg] laminated plate subjected to biaxial ten-
sion
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and their Laurent series expansions to reduce the potential energy
of a plate to a contour integral that is evaluated numerically by the
trapezoidal rule. In addition, the variational statement of equilib-
rium is applied to the potential energy to obtain a linear system of
equations in terms of the unknown coefficients of the Laurent
series. Solution of these equations yields the stress and displace-
ment fields for a given problem. This approach represents a com-
putationally efficient alternative to boundary collocation proce-
dures that are typically used to solve problems of the type
presented herein.

Results have been presented for a square two-layer unsym-
metrically laminated plate that is subjected to biaxial tension on
the edges and that has a relatively small, inclined central elliptical
cutout. The results were compared to corresponding results ob-
tained from finite element analysis and show excellent agreement.
The results also show that the amount of cutout inclination affects
greatly the out-of-plane displacements and bending stress result-
ant at the cutout boundary.

Appendix

In Eq.(19), the constant coefficien®, , S, andT, are defined
as

Ro=AecB11~A16B16
R1=2AseB 161 2A26B11~ A16B12— 2A16Bes— A12B16
Ro=A2:B11+5A26B16~ 3A16B 26— A12B12— 2A1,B6s
Rs= —2AgeB2et AzeB1ot 2A2BesT 3A2B 16— A16B2o—3A1:B g
R4= — AxeBast A2oBiat 2A2Bes— A12B2o— AgeBa2
Rs=A2:B26— AzeB22
So=A11B16— A16B11
S1=A11B121 2A11Bes— A1eB16— A12B11— AseB1s
S;=3A11B6t AreB 12t 2A16B66— 2A6eB16~ 3A12B16~ AzeB11
S3=A11B2ot 5A16B 26— A12B 12— 2A1:Bss— 3A26B16
S4=2A16B20t 2A66B 26— A12B 26— A2eB12— 2A26Bg6
S5=AseB22— Az6B2s
To=AnAss— Aie
T1=2A11A2— 2A1 A6
T,=2A16A06+ ArAz— A~ 2A1 A
T3=2A16A2~ 2A10A%
T4=A2Ags— A%

The coefficients5, of the characteristic equation given in Eq.
(20) are defined in the form

Go=S5B22t RsBog—T4D 2,
G1=RsB 1o+ S4Boot+ RyBogt 3S5Bogt 2RsBes— TaD 2o~ 454D o6
G2=RyB1o+ S5B 1ot 3RsB 16+ S3B oot RaBogt 35,B o6+ 2R,4Bes
+2S5Bge—2T4D 15— ToD 2= 4T3D 26— 4T 4D
G3=RsB111+R3B1ot S4B 1o+ 3R4B 16+ SsBigt S:Boyt RyBog
+ 38:3BZG+ 2R3BGG+ 284866_ 2T3D 12_ 4T4D16_ T1D22
—4T;D6—4T3Degs
G4=RyB11+RyB1o+ S3B 1o+ 3R3B 16+ S4B gt S1Boyt R1Bog
+3S,Bost 2RyBegt 2S3Bes— T4D 11— 2T5D 15— 4T3D g6
—ToD2—=4T1Dos—4T,Dg6
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1 Introduction replaced with an equivalent penny-shaped crack. Evidently, the

In this paper, a three-dimensional penny-shaped isotropic in crack tensor is just the generalized form of the Budiansky and

mogeneity surrounded by unbounded isotropic matrix in a uni- Connell's damage parametgl1])

form stress field is studied based on Eshelby’s equivalent inclu- 10

sion method[1]). The penny-shaped inhomogeneity is treated as 0=—5 E aﬁ 2
the limit of a spheroidal shape inhomogeneity. An ellipsoidal v
shape inhomogeneity, as shown in Fig. 1, in a uniform stress fi
is a classic probleni1,2]) briefed in the Appendix. In particular,
in plane elasticity, the penny-shaped inhomogeneities are stud
by Hurtado et al[3], and asymptotic solutions for lamellar inho-

%ich is associated with the energy disturbance caused by the
Eﬁrssence of the cracks; see, e.g., 8%). In this paper, we focus

the penny-shaped inhomogeneities and the corresponding en-
i~ ) ! ergy disturbances, and in particular their macroscopic representa-
mogeneities of arbitrary shape have been obtained by Homentca h>./ Note that the penny-ghaped crack or anticraclf is qus)t a spe-

schi and Dascal{]. .cial case of the penny-shaped inhomogeneity, as discussed in

The Eshelby’s tensor is usually defined by ea}ch componentingd yinn 4. Thus, the penny-shaped inhomogeneity furnishes a
certain local coordinate system, see, e.g., Bg.)(in Appendix A, much moré gene’ral microdefect model

and so is the solution based on Eshelby’s equivalent inclusion : : : :
method. Even in the well-chosen local coordinate system, the gln this paper, asymptotic developments for small thickness ratio

lutions are very complicated; see, e.g., the work of Hurtado et i's used to the Eshelby’s tensst of spheroidal inclusiqns, e.,
[3], Zhao and Weng5], Shafiro and Kachand], let alone in the =S+ M¢+0(£7). The tensoS and M are expressed in global

global coordinate system. It is hard to see the influence of Esh§ _ordlnate systems. Furthermore, the. Eshelbys equivalent eigen-
by's tensor as an entity from such solutions. If we are main rains of penny-shaped inhomogeneities are expressed explicitly

concerned about the macroscopic responses of inhomogenei hésér?grdMdii?utrir;?:réalcgﬂgggsb a pennv-shaped inhomode-
rather than their local stress fields in detail, e.g., damage model- "~ ~ ' _gy 0. % 0 y apenny p N 9
ing, such solutions are generally too complicated to be used. ey iSU*=V/2o™:&" whereo ' is the farfield stressy ande™

A typical microstructure-based damage variable is the cra@k€ the size and eigenstrain of the Eshelby’s equivalent inclusion
tensor; see, e.g., Kachangv], Swoboda and Yang8,9], and of the inhomogeneity, respectively. The inhomogeneity is geo-

Yang et al[10]. For a solid of siz&/° weakened by cracks, the metrically identical to its Eshelby’s equivalent inclusion. Since
Cracgll< tens.or tékes the form n ' V—0 due toé—0, for a macroscopically sensible penny-shaped

inhomogeneity, the equivalent eigenstraih should be singular,
otherwise its energy disturbance is trivial and the inhomogeneity
1< is macroscopically insensible. The asymptotic expressions of the
Q= 2 aﬁnknk (1) singular equivalent eigenstrakt have been obtained in this pa-
\agr=] i ined i i *
per, and the singular factorg contained in the singulas™ have
been identified.
wherea, andnX are the radius and normal vector of kil crack. If moving the singular factor; from £* to V, the equivalent
Equation(1) shows that only few characteristic geometric quantsize is V*9=V# and the equivalent eigenstrain ig,=€*/7.
ties are incorporated into the definition of the damage tens®oth the equivalent siz&#% and eigenstrairxgq are finite quanti-
Based on such a definition, any crack of arbitrary shape can f§& and the energy disturbance can be rewritten Uds

=Veq/20-°:e§q. In Section 3.2, the so-callezhergy-based inclu-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF i i ! i i -
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- sion methods proposed. Unlike the Eshelby’s equivalent inclu

. . e .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 18,S10N (), the energy-based inclusiof 4 may be geometrically
2000; final revision, Jan. 8, 2001. Associate Editor: D. Kouris. Discussion on tigifferent with the corresponding inhomogeneity. For a penny-

paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departmentlshped inhomogeneity, the energy-based equivalent inclusion is of
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and Wit_:he sizeVed and prescribed by the energy-based equivalent strain

be accepted until four months after final publication of the paper itself in the ASM " ) . -
JOURNAL OF APPLIED MECHANICS. €54 The energy-based equivalent inclusion and the Eshelby’s
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X3

(a (b)

Fig. 1 (@) Inclusion or inhomogeneity  Q; (b) an ellipsoidal in-
clusion with principal half-axes  a;, a,, and a; X,

equivalent inclusioriprescribed bye*) cause different local stress
fields but the same energy disturbance. It is pointed out in Sectior
8 that the sizev®9 of the energy-based equivalent inclusion fur- ¥,
nishes a generic damage measurement for different inhomogene - !
ities.
Fig. 2 Global and local coordinate system

2 Global Eshelby’s Tensor

The Eshelby’s tensor of a spheroidal inclusios, €a,=a)
takes the forng;;,, = S (v,€) where{=as/a as defined in Egs. see also Yand12]. Evidently, S, reduces to Eq(A8) if n;
(A3), (A4), and @A5) in Appendix A, and is denoted symboli- ={0,0,1}. Equation(8) implies thatS=S(v,n). This is a very
cally asS. For small thickness ratig, the S tensor can be ex- special property since in gener&@=9 »,n,n®,n]. Here, we

panded into power series with respect{tabouté=0 introduce the identity tensors of rank four and two
— — IS 2\ — 2 1
878(V15)78‘§:0+(9_§§:0§+O(§ )7S+M§+o(§ ) I:|I]k|:§(5lk51|+5l|5]k)1 |:||J:5IJ’ (9)
®) and theN andT tensors
where 1
S N=nnnn, T:Tijk|:Z(nink5j|+nin|5jk+njnk5i|+njn|5ik
S=S|§:0, MZW . (4)
=0 —4nin;neny). (10)
The asymptotic expression TheN andT tensors are associated with the normal component
S—S+ M¢ (5) and shear componentof the stress tensar in the direction ofn,
i.e.,

is a good approximation of th& tensor foré—0 or penny-
shaped inclusions. o’=o:No, =0T:.0. (11)

2.1 Properties of the Global S Tensor. Obviously, theS Then theS tensor can be expressed in terms of theand T
tensor is just the limit of the Eshelby’s tensor defined in @@). tensors
Now we transform theS tensor from the local coordinate system

; . . v 1-2v
to a global coordinate system. Consider a local coordinate system S=2T+ —nnl+ N. (12)
X1:X2: X3 In the global coordinate systerax,x; as shown in Fig. 1-v 1-v
2i1>The gl)rectlon c(g)smes of a>.«x§, Xor,X3r N glgbgl system are |4 transpose o8y, for ij andkl is denotecST:SEk, =Sy »
n~, n;”, andn{®’, respectively, and the principal axes of a
penny-shaped ellipsoidal inclusion coincide with the axes
X1 ,X2r , X3/, @S shown in Fig. 2. If the components of the Eshel-
by’s tensor in the local coordinate systenﬁj’ﬁ(, , its components
in the global coordinate syste;,; can be determined by the

1_2VN 13
17—\ (13)

The S tensor has some interesting properties, e.g.,

14
S'=2T+ —Inn+
1—v

transformation SijmnSmnki=Sijki Or S:S=S, (14)
Sijkl = ngm)nj(n)n(kp)nl(q)sr%npq- (6) and
Note thatn®™n{P +n{@n{?+n®n®=5,; and set (S—1)-n=0. (15)
ni(e,): n=n. @) An important theorem is
Then theS tensor defined by Eq(A8) in Appendix A can be (1- 69 =1+ LS (16)
expressed in the global coordinate system 1-6

1 for 6+ 1, since
S=Sjj« zz(ﬁiknjm + SN+ djning+ & nini— 4ninynny)

0 0
(I*ﬁS):(IerS E(|+m8):(|*05)5| (17)

14
+ ———nin;( S — Niny) + nynngn, (8)

1-v exceptd=1. TheS tensor can be split into two parts:
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v 1-2v M=M= (v—2)y(Sxnin + & nin+ & .niny+ 5;nin
S=S,+S, S-= nnl+ N, S=2T. (18) ijkl ( ) v(Sik it it oty JIRUALIS
1-v 1-v _4ninjnkn|)_(41/+1)’}/ninj(5k|_nkn|)

Itis easy to Verify +(21/*1)ynkn|(5ij*ninj)+2(2vfl)7ninjnkn|
$:5=5:5=0, $:5=5, S:5=S§. 19) (29)

Split the S, tensor into the unsymmetric and symmetric parts or

M=4(v—2)yT—(4v+1)ynnl—(1—2v)yInn+6vyN.

v 1-2v
S,=S"+SYM, SM=——nnl, SYM= nnnn. (30)
1-v 1-v It is easy to verify
(20) g _
M:S=0=SM:S=0=S M:S=SM:S 31
Then, the following relations can be verified - M (1)
and
Ci 1 Ci 1 ym 21 77/74]/271
S _ES“ Sh' _ﬂsﬁ (1) SIM=4(r=2)yT—(4v+1)yml+ ————N
2
whereC and u are the elastic compliance tensor and shear modu- 1-2p (32)
lus, respectively, SIM:S=—2y|(2—v)S+ T S|
-V
o= i 2 £ 22 i i i it
=—gl+—¢1 w= 2(1+7) (22) 3 Equivalent Eigenstrain of Inhomogeneities

Equation(B4) in Appendix B could be rearranged as

whereE is the Young’s modulus. It is easy to verify 0 o . . 0 . 0
[Dijmn— (Dijki = Dijki) Simnlemn= (Diji = Dij) e (33)

C*=SC= C:STzi[ 1-2v N+TI. (23) whereSy ., represents the general Eshelby’s tensor of ellipsoidal
wl2(1—v) inclusions, and
Therefore, Dfq =D=\01 +24°,
clsc=s". (24) E° E°

)‘0:(1+V°)(1—2v°)’ “022(1+u0) (34)
2.2 Properties of the Global M Tensor. Obviously, the
tensorS+.M: £ is just the Eshelby’s tensor f@r<1, as defined by and Dfj,,=D* possesses the same form with the parameters
Eq. (A7) in the local coordinate system. The can be splitinto E* ,* " If assumingw®= v*, then

two parts .

E
~ ~ o~ *_(1_ 0 —1_
M=M+M, M=M[r,n n@], M=M(r,n). (25) D*=(1-0)b% =1 EY (35)

In view of the Eq. A7), theM tensor can be defined in the localThus Ed.(33) can be simplified as

coordinate system (1—08):e* = 0= &* = 0(1 — 08S) ~1: °. (36)
11102 e ﬂ VIR 8v—1 ) An asymptotic expression of the inverse tensor is
4 ’ 4 7 (26) (1-68) 1B 1+ 9B L(8S-9):B7 1 if £-0 (37)
_ 7-8v - where
Mlﬂz:Ty’ Y= 8(1-v)’ _ —1_ -1_ 0
B=1-0S, B™!'=(1-09 '=I+7—S (38)

All other nonzero components are obtained by the cyclic permu-
tation of (1, 2, 3. Similarly, theM tensor is due to Eq.(16). Note that, with the asymptotic expression E5).

for £—0,
Miz15=Mogos= (v—=2)y, Mazz=2(2v—1)y, 27) (I—QS):[Bfl+ 0871:(8—8):871]
M3gz11=Mggoo= —(4v+1)y, My13=Mppz=(2v—1)y. —(B—OME):[B 1+ 0B 1 M:B 1¢]
All other nonzero components are obtained by the cyclic permu- =1—6PM:B L M:B 12, (39)

tation of (1, 2, 3. Using Eq.(6), the globalM tensor is obtained . . .
( 3 9 Ea.®) g Thus, Eq.(37) is proved or with an equivalent form

= 13-8v Y AT CUNERMCUNEINCANEINEY (1-68) =B '+ 6B 1(S-9):B 1+ 0(£).  (40)
4 Then, the eigenstrain is obtained by E§6),
+ gv-1 Y[NONOA@R@) 4 n2R@RLR1] e =0(1-08) 1e%= 9B 1%+ 6°B 1:(S—-9):B L%
6 +0(&%). (41)
7_
+ Y Y[ NP R2) 4 P RMRLAER) According to Eq.(B5) of the Appendix, the energy disturbance
caused by the existence of the penny-shaped inhomogeneity is
+n@nOR@RD 4 p(DR2RRIN1)] (28) 1 v
. U*=—f o’ e*dD= = 0% &* (42)
and the globaM tensor is 2 Ja 2
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since £* is uniform in domainQ), whereV is the size of the v g

spheroidal inhomogeneity @ B o
7 2a=2a <R | -0,
4 Am a3 4w ,
V= ?alazag,:?a ? = ?a f (43) 2 W =2
Therefore, the energy disturbance is obtained, (a) (b)
U*= 2_Wa3g-0; £ E. (44) Fig. 3 (a) The Eshelby’s equivalent inclusion € of the penny-
3 shaped inhomogeneity; (b) the energy-based equivalent inclu-

. . . . . . i eq i i
Evidently, the equivalent eigenstrairi should be singular or in- Sion €7 of the same inhomogeneity

finitely large, otherwiseU* —0 which implies that the penny-
shaped inhomogeneity is insensible at macroscopic level. In order
to make £* singular, obviously, the only possibility is that the

. \ AR g . eq
relative Young’s modulu$’ is infinitesimal or infinitely large, i.e., U* = V_ o-ozs;q, VeI v = 4_7'ra3§eq'
E* E* 2 3
FZFHO or F:@—WO. (45) 1
Eeq=— " =S:8(&eq): S €. (55)
3.1 Asymptotic Eigenstrain £* for Infinitesimal I'. Note 7
that 1- =T, and if '—0, due to Eq(38), Both equations show that the energy disturbance of the penny-
1 shaped inhomogeneity can be evaluated by introducing an inclu-
#—1, B l-=S (46) sion prescribed by an fictitious eigenstrain. However, the Eshel-
r by’s equivalent inclusion method, corresponding to Esfl), is
In view of Egs.(37) and (39), the asymptotic expression of thebased on the inclusiofd which is geometrically identical to the
inverse tensor is inhomogeneity, as shown in Fig(ed. On the other hand, E¢55)

represents a new approach, #reergy-based equivalent inclusion
method The method yields the same energy disturbance but its
inclusion Q)¢9 is geometrically different with the inhomogeneity,
as shown in Fig. @). Especially, due t¢.,<1, the energy-based
equivalent inclusion, is still penny-shaped and its spheroidal prin-
g2 oo cipal half-axes ar@®=a anda3’=aé.q= £.q/ a3, as shown in

T =MiSIMISg, Fig. 3(b). Thus, the energy-based equivalent inclusif? is

(48) much thicker than the Eshelby’s equivalent inclusfon
The two methods are equivalent in the sense,

1

—pS)-1,
(1-68) T

1
S+ FS:(S—S):S} 47)
with the error

ezM:B—le:B-lghM:s:M:s(

due to Eq.(31). In order to make the error sufficient small, it is

required that the equivalent thickness ratig should be sufficient \ ved
sn?all, ie. a 2 u*= 5 o e* = - o e Ver =Veieg, (56)
£ :£<1 (49) which shows thav®? and 7, are one pair of conjugate variables.
eq F .

Although V€9 and s’e‘q may have infinite combinations based on
Note that Eq. (56), it is required that the/°% and &7, are obtained fronV/
and &* by moving the singular factor frora* to V, as shown in
Eqg. (55). That bothv®9 and £7, are finite quantities, is one of the

1 1
LS8 = Sl= g ME=MEeq— S(Eeg) =S (50)  cssential ingredients of the energy-based equivalent inclusion

. method.
Then, Eq.(47) can be rewritten as Note thaté,q<1=>S(£.9~S. Then,
1 1
[1-68(£)] = £ {S+S[S(£eq) ~ SI: S = £ S:S(£eq):S. £5q=SiS(£e):S°~S:S:Se"=S ¢ (57)
(51) Note that
In view of Eq. (36), the equivalent eigenstrain is obtained, 0 1+2°
q q 9= C% ¢°, Coz—%IHE—OVI. (58)

1
e =0(1-08) L&’ (1-08) 1% = S:S(&eq): S0 » _ _ )
r In the finite domainQ)®9, the energy-based equivalent density of
(52) the energy disturbance is defined as

3.2 Energy-Based Equivalent Inclusion Method. For the u* 1 1 1
penny-shaped inhomogeneity with- 0, its Eshelby’s equivalent ueq=V—eq =3 o gl ~ 5 0°:s.C% a-ozz o:C*:0° (59)
eigenstraine* contains a singular factay, as shown in Eq(52),
1 whereC* is the equivalent elastic compliance, due to E2§),
n= f . (53) 1 1— 2V0
C*=S.Cl=—; S0 Nt (60)
The singular factor ensures a finite energy disturbarid&é. The po12(1=v7)
energy disturbance is obtained by E¢&2) and (43), Obviously, C* possesses the same symmetryCSs i.e., Chi
Vo 27 . =Cliu=C{jk=Cx;; : and is a positive definite tensor since
U*= -0 = —a°,S S(&):S € (54)
’ P N ueqwlao-c*-o - 1_—ZVOUZ+TZ =0  (61)
or in an equivalent form 27 T ull2(1—20) "0 70
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where o, and 7, are the normal and shear components, respec- (1-8):e* == e* =(1-8) L0 (73)

tively, of the stress tensas® on the plane of the penny-shaped

inhomogeneity,o2= 6°:N:0° and 72= 0% T:0% see, e.g., Eq. An asymptotic solution of the inverse is

(11). 1
-8) o= + +
3.3 Asymptotic Eigenstrain £* for Infinitely Large T (1=8)7= f(clsn C23)+A )
Note thatd=1—T", and if [—o,
where
——-T——o, B 1-|-S (62) 0
1 1-v 1 1

In view of Egs.(37) and (39), the asymptotic expression of the Cl:ﬂ 1-2,0° Cfﬂ 5,0

inverse tensor is (75)
(1-68) '=1-S-T(1-9:(5-9):(1-S)  (63) A=1-(1-20%) ye, 1N,
with the error Note that, if{—0,
JME MBI M M ST (1= 868+ 0:8) 5 —(1-5- MEH(e.8+¢:8) ¢
=M:(1-S):M:(1-9)&,. (64
In order to make the error sufficient small, it is required that the = - Mi(C1$FC8)
equivalent aspect ratié, should be sufficient small, i.e., =—M:(c;S,+¢C,S)
feq=Té<1. (65) =(1-219)yc,S,+2(2—1%) yC, S
Note that +(1-219) ycylnn:S, (76)
I'[8(8) =S| =T Mé=Méeq—S(£eg) —S. (66)  due to

Then, Eq.(63) can be rewritten as

(1-9):S,=(1-9:5=M:5,=M:5,=0, (77)
[1-68(&)] '—=1-S+(1-9):[S(£eq) —SI:(1-9)

and
=1-S+(1-9):8 (1-9). 67
(179):8(Eeq:(179) (67) (I-8):A—(1—S— M¢&):A=A—SA— M:A¢
In view of Eq.(36), the equivalent eigenstrain is obtained,
=A—S+(1-21%) yc;SInn:S,— M:Aé
e =0(1-08) 11— —T[1-S+(1-9):8(£q): (1 -9 ]:£°%
(68) =1—(1-2v%yc,Inn:S,—S
The eigenstrain contains the singular factoiwhich ensures a o It 0
finite energy disturbanc&*. Similarly, the energy disturbance +(1=207) 75 ve S~ MAE (78)
takes the form
due to
\Y, ved
U*:EUOZS*ZT(TOI&I:q (69) 1+V0
S:Inn:Snzsn:Inn:ShzﬁSh. (79)
where v
=T, (70a) Therefore, foré—0,
1
4 I-8):|=(c;S,+¢,S)+A
Veq:?a3§eq' (7(1)) ( ) f( 131 ZS
—1=S—M:AE+2(2—1°) yC,S,
b= —[1-S+(1—9):S(éeg):(1-9)]:€°, (70c) z .
. . . . +
which is based on the energy-based equivalent inclusion method, +(1-21% y¢, S+ (1—240) ! VO ¥C1 S,
as shown in Fig. 3. The Eshelby’s equivalent inclusion and the 1-v
corresponding energ)e/-based equivalent inclusion can still be re- —1-S— M:AE+S+S,
lated bya®I=a anda3’=af.,. Note that,{eq<1=S(é)~S.
Then, due to Eq(70c), =l-M:Aé—I (80)
£5q~(S—1):£°. (71) or
Similar to Eq.(59), the equivalent density of the energy distur- , 1
bance is (1-5) :g(Cl%+C2$)+A+O(§)- (81)
u* 1 1 . . . . . )
ueq:V_eq: 50'05831{“ za_o:(c* —C%: 0", (72) The asymptotic expression of the eigenstrain of the crack is ob

tained,

4 Asymptotic Equivalent Eigenstrain of Crack & =(1-8) L f(clanrCZS[)JrA g0
: ¢ :

If D*=0 and é—0, the inhomogeneity becomes a penny-

shaped crack.In view of Eq.(33), the eigenstrain of the crack is 1
determined by % (€1S,+C,S): €°. (82)

4f D* == and¢—0, the inhomogeneity becomes a penny-shaped anticrack, add1e energy disturbance caused by the presence of the crack is
the corresponding eigenstrain is determinedShy* = — £°. obtained,
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asymptotic prime strains without the singular factors. Then, it is
€ “ worthy to discuss the prime eigenstrain and some related proper-
ties.

5.1 Local Prime Eigenstrain. In the local coordinate sys-

24 tem, i.e.,n={0,0,1}, the prime eigenstrain is determined by Eq.
2 (87),
(@ (b ohi= 0% o5 00%
Fig. 4 (a) The Eshelby’s equivalent inclusion of a crack; (b) 62 0
g;gcipherical energy-based equivalent inclusion of the same g§3:1_ ogg3+ 1—91— Vo(sgl‘i‘ 822), (89)
1= 98(1)2: 853:_1_ 08(2)@ sglzmsgl
\Y, 14w 1 ich i ; i
* 0.0 Jim 34T .0 which is consistent with Eq$22.29 and(22.19 of Mura[2]. For
Uc=g0oe l'LnOZ 3 ¢ g(cls”JrCZSf)'s example, according to Eqii22.19 of Mura[2],
2 * o 0
_ 3 .0 S 90
=g akciS+cS)E (83) T 208,02 (90)
or as an equivalent form On the other hand, by E¢87),
Ve 1 A
ur =3 &5, 7= 7 Vei=—a?d, €35~ 0( 1+ lTasnza) £33 (91)
(84)
Eéq:(clanrCzSt)iso Although they possess different forms, both of them yield the

same result sinc&,3,5=0.5.

which indicates that the energy-based equivalent inclusion of a5.2 Stress of the Inhomogeneity. The strain disturbance in

B H eq_ n,eq_ Heq_ 1 i
crack .|s a sphere, i.ea;"=a5"'=a3 '=a, as ;hown in Fig. 4, the inhomogeneity) is, due to Eqs. A1) and(14),
In view of Egs.(58) and(21), the energy disturbandg? of the

crack in Eq.(83) can be rewritten as _ser—s| o+ 6? S| 0= % S 60 92
2 o e=Se* =S 12 € —1T-g>¢- (92)

*_ % r 2¢0 0y, 20 0 0y— 21— (4,02
Ue _EO[UOf(V )+ 709(»)] 1) 3 (1=, The stress in the penny-shaped inhomogen@itis uniform and

(85)  can be found due to EqsBé) and(24)
161 (%)% oo L .
3(2—19) =D (e%+e—¢&*)=D%[(1-0)I + 6S]: ¢

— 011 _ (0. 0
where o5=0%N:0° and 75= 0" T:0°. Evidently, it is exactly =DR[(A=0)1+6SEChe
the result obtained by Budiansky and O’Conrjéll]. The coeffi- =[(1-0)1+6S"]:6”. (93)

cientsc, andc, are directly related with(v°) andg(»°). Here, _ o .
we give the coefficients a new mathematical explanation, due 1§€ Stress components of the inhomogeneity in the local coordi-

g(+%)=

Egs.(32) and(75), nate systemn={0,0,1}, is determined by Eq93)
1 1 1 o, 00 0 °
S:M:S:—(—Sn+—3):>sn:M:Sn:——31, cu=(1-0on+ 7503 0= (1-0)0y+ 7503
Cl CZ Cl (86) (94)
- 1 Gy= 0% 0p=(1-0)0%, 03=0%, Gy=og.
S:M:S= C2 S The inhomogeneity stress vector on the plane of the penny-shaped

inhomogeneity is
5 Prime Eigenstrain

A fA A A 1_5. 0 0 0y_ 0
In view of Egs.(3) and (41), the limits of the Eshelby’s tensor N 0={031,73, 033 ={03.052 053 =N @ (95)
and the eigenstrain faf—0 are which indicates that the inhomogeneity stress vector on the inho-
mogeneity plane is equal to the farfield stress vector on the same
imS—S, lime*=0B"1:e=——[(1—6)l+ 6S]: °. plane and ha_s nothing to QO with the elastic_ moduidisor E°.
-0 £0 1-0 The key leading to Eq(95) is Eq. (15). By using Eqs(93) and

(87) (15,

The limit of the eigenstrain is termed the prime eigenstrain and is n-é=n-[(1— )+ 6S']:6°=n-¢°+ on-(—1+S"):6”
still denoted bye* in this section. The asymptotic expressions of 0 o o
the prime eigenstrain are =n-o +00°:(S-1)-n=n-o". (96)

S*HES:SO, it T 0 e* ~T(S—1):60, if T o, 6 Influences of Unequal Poisson’s Ratios
r During the preceding deduction, the equality 0= v* is re-
(88) quired to achieveD* =(1— 6)D° which simplifies the problem
As shown in Eqs(52) and(68), the prime eigenstrain is the domi- Significantly. Now we discuss the influences on the deduced ex-
nant part of the eigenstrain #,,<1. In fact, the approximate pressions owing to the deviation from the assumption, .,
asymptotic eigenstrains in Egqg57) and (71) are just the +v*. Note that
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pr— VO :Uv* M*

o I N+TI Therefore U* —0 if &—0, which indicates again that the energy
cupr T (1-2v)(1+ 6% Wb +,?'—'9F +I1(97)

disturbance is trivial if the difference betwe&1 andE* is lim-

r

ited.
where L .
6.2 Infinitesimal Relative Shear ModulusI'.  ForI'—0 or
o v* — 0 r= u* 08 6— 1, we adopt the following asymptotic expressions
Ta—2e0a )l (%8) ) )
. 0 _ -1 _
Then Eq.(33) can be recast as e—gSe, (1205 "—>FS S-S (108)
(1—6S):e* = 9°—KI, (992) They are the prime eigenstrain and corresponding quantities; see,
where e.g., Eqs(88) and(47). These asymptotic quantities dominate the
behaviors of the penny-shaped inhomogeneitysdf=¢/T'<1.
0=1-T, (9%) Note that
k=6,I'(I:S 6" +tre?). (9%) S.S*HS.(ES.EO):ES.SO (109)
: TS .£”.

Note that thed defined in Eq(99) is consistent with the defined
in Eq. (35) due tor®=v* there. As compared with E¢36), the Therefore,
unequalv® and v* will create an additional ternkl which is a

spherical tensor and disappearsif=v°. Then, the eigenstrain is

obtained,
gr=g* +sgn, (100R)
eh=06(1-6S) "¢ (10M)
ef=—k(1—-69 LI (100)

The leading terma is exactly the eigenstraig* for equalv* and

, as discussed |n Section 3. The energy disturbance can also be

wrltten as a similar form

0: g* U*:E(foist.
(101)

Consider the case @f°= x* and

U*_! 0. *_U*+U* U*_! v
720'.8 =U, v Miz v

6.1 Equal Shear Moduli.

vO# v*. Sinced=0 due tou’=u*, one obtains by Eq100)
£,=0, (1029)
g5 =—kl. (102)
Substituting Eqg. (108) into Eqg. (92) then
k=6,-1:8:lk+tre®)=k= Ltra;ozwtrs0
e 1+1:8:16,
(103)
where
O s B 104
VE1trsie, T4 (104)
Then, U} =
uted by the unequal Poisson’s ratios is
\ 2
* _—_ 0. .x__ — 3 Otr 0
U3 508, 3 a*wtrotre”¢
27(1-2.°) ou2
=——3p @ w(tro~)°& (105)
due to
1-2,°
tre®= = tro®. (106)

Obviously,w is a finite quantity for any combination of* and
v, and even fon* —0.5 since

1-°

v*—0.5=0,—0=w— 17,0

(107)
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1
k=0, (1:S:e%+1tre®)— QVF(F I:S: £0+tr£0) —0,1:S:e*.

(110)
Note that, due to Eq60),
scotT?” 1 111
=T g0 (111)
Therefore,
L ok Q0. ,0_ 1- 2V 0”
k—6,1:Sie* = 0,1:S:C% 0%~ » —hn:o®. (112)
Note that
. 1 1+91
(1-68) %l Sl=T—55n (113)

Then, the eigenstrain contributed by the unequal Poisson’s ratios
is obtained by Eq(100c)

1(1-291+° o
* _ —-1. _ = v .0
£, k(1-68) 11— T =7 —ZMON.U'
(114)

with the singular factor 11. The corresponding energy distur-
bance is

Voo 27 4 0
UVZEO'ZEVH—?& feqz 000
(115)
L (1-209(1+9)
V (1 V) 14

0 due toe}, =0, and the energy disturbance contribor in an equivalent form based on the energy-based equivalent

inclusion method,

* Veq 0. eq 4m 3 * 0;}: 0
UVZTO' Eyeq, V :?a feq, Syveqﬂ_z—,u/oN:(T .
(116)
6.3 Infinitely Large Relative Shear Modulus I'. For I

—o or 6— —oo, we adopt the following asymptotic expressions
e—T(S—1):e% (1-68)7'=1-S, 8§—-S (117)

They are the prime eigenstrain and corresponding quantities; see,
e.g., Eqs(88) and(63). These asymptotic quantities dominate the
behaviors of the penny-shaped inhomogeneityéif=T¢<1.
Note that

S:e*—S[I'(S—1):€°]=0 (118)

Therefore,
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0 V0 =01

1-2v
k=0,I'(1:8:e%+1tre® — 0,I'tre’=——5—6,I'tro®.

£ L0 =g -
(119) 08 | T /\5*‘ ——
v'=03
The eigenstrain contributed by the unequal Poisson’s ratios is n m®® 0.6 J }
1*2110 |§/ = 0.4 (=04 i
e=—k(I1-68) Ll—— 0 6,I'tra®(1—9):1 (120) j OL
- 0.2 —
and the corresponding energy disturbance o | |
\% 27Ta3§eq 1-21° 1+° 0 15 30 45 60 75 90
us =5 0% et —— —3 o 6,tra°| tro®— 1-,090]" % Vieptany
(121)

L L Fig. 5 The variation of h with respect to and »°
It should be noted that the deduced asymptotic eigenstrains in g P “ v

Egs. (114 and (120 is based on the assumption that the prime
eigenstrain is the dominant part of the eigenstrain. Thus, these
asymptotic expressions is valid|if* — 1%/ <1. Thus, S*%is exactly the surface area of the energy-based equiva-
. ) lent inclusion®9. Equation(126b) shows that the sign of the

7 Signs of Energy Disturbances energy release ra@, is fully dependent on the sign of9. Note

As discussed in Section 3 and Section 6, the energy disturbaricat a penny-shaped inhomogeneity approaches a penny-shaped
of penny-shaped inhomogeneities is trivial unless the relatigack or anticrack ifi’' —0 or I'—c°, as discussed in Section 4.
shear modulud” is sufficient small or large. In his section, weThen, the different signs @, for I'—=0 andI’— are consistent
discuss the sign of energy disturbance of the penny-shaped inkdth the fact that the energy release rates of cracks and anticracks

mogeneity for the two cases. In view of Eq61) and (115), the
energy disturbance takes following signsI'i- 0,

>0 if »0>p*

=0 if 0=p*

<0 if O<p*
(122)

for nonzeroe®. In the the casé&' — =, Eq.(72) can be rewritten
as

UA=VERE,  fe S 60010950, U
M , 50 Ch ;o Uy

* _\/eq,,eq eq~l 0. * _ ~0y. 0
Uj=Veusd, ut~ 2 6% (C*—C%:0%<0  (128)

since the tenso€®— C* is positive semidefinite, as discussed in

Appendix C. The sign olJ* for I'—c, as shown in Eq(121),
depends on not only the* —»° but also the stress state.
The different signs of the energy disturbanlng;for I'—0 and

have different signs, as pointed out by Hurtdd8].

7.2 Apparent Young’'s Modulus of C*. Both of the Egs.
(122) and (123 show that the compliance tensGi* plays a key
role in the equivalent densities of the energy disturbances. It is
worthy to discuss the property of the tenser. Consider a body
subjected uniaxial stregsin the directionm. Here,e denotes the
normal strain in the same directiom caused by the uniaxial stress
o. If the body is of the compliance tens6f, obviously, the stress
and stress are related by=E%%. If the bodly is of the compliance
tensor C*, then o and ¢ are related by the apparent Young's
modulusk,

E=E(m). (129)

Consider the problem in the coordinate systems as shown in Fig.
2. If the directionm coincides with thexs-axis, the direction
cosines ofn can be expressed in the global coordinate system,

o=Ee,

I'— just indicate a simple fact, through the variation of the={N1.N2,ns}, whereny=m-n=cosa. In view of Eqg.(60), one

complimentary energy, that a weak inhomogeneify<(1) sur- obtains
rounded by a solid weakens the solid, and a strong inhomogeneity _ 9.0
; 1 1] 1-2v
(I'>1) strengths the solid. W=C3333=F 200=9 Na3335t+ T3333 (130)

7.1 Energy Release Rates.The rate of the energy distur-

bance is
U*=U*(a,I,n,+")=G,a+Gr[+Gh+-+  (124)
where
6o G M GtV s
Jda ar an

are the energy release rates due to the variatiors bf n, - -+,
respectively. Evidently

U* =Veuyei= G, = S*ueY, (126)
aVvea

Seh= A (1260)

Especially, for a penny-shaped inhomogeneity dgg<1,

4
veq:? a¥t, = SPI=4ma’y, (127)
and for a crack

veqf?ﬂa?’:se%maz. (128)

Journal of Applied Mechanics

where Nazs=n3=cos @ and T335=Nn3—n3=cog asir’ a, due
to Eq. (10). Therefore,

EO
E(m)=E(a)= T

(131)
0

— 4LV
2(1-9)
The relationh=h(a,+°) is illustrated in Fig. 5. Evidently, &h
<1.0=E=E°.

h=2(1+1%cog a cog a+sirf a|.

8 Generic Damage Measurement

As shown Eq.(55), the size of the energy-based equivalent
inclusion )¢9 generally takes the form

Vel=pV. (132)

For a penny-shaped inhomogeneity, its siz&/is4m/3a3¢ with

the singular factokg, so the productz should be finite to ensure

a finite V®9. For an inhomogeneity of finite size, its Eshelby’s
equivalent eigenstrain should contain no singular factor, otherwise
its energy disturbance will be trivial or infinitely large. Let's con-
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Table 1 Some characteristic quantities of different inhomogeneities

\Y Vel

Inhomogeneities 30 30 n 11}

Penny-shaped inhomogeneity
; : ¢ ! s

for T—0¢eq=p <1 ed T
Penny-shaped inhomogeneity -
for I'—oo, feq:§F<1 & geq r S—I
Penny-shaped crack 3 1 é 1S, t ¢S

. . 31—y [ 1-4°
Spherical cavit 1 1 1

p y =50 ﬁ(lfz,,)"%'
3(1-1% [1-5°

Rigid sphere 1 1 1 T 2(4=59 | 1+40 Il+51

sider spherical inhomogeneities. If the inhomogeneity is a sphegeometric measurement of the energy disturbance caused by the
cal cavity, its Eshelby’s equivalent eigenstrain can be determinptesence of the inhomogeneity. Naturally, the dimensionless dam-

by age variable can be defined @ssuming only one single inhomo-
| :S Lok 0 *_3(171;0) 17710 "+5| o g(:.‘neny
( )'8 SeTEes 7*51/0 2(1721/0) € w= ved (136)

where& is the Eshelby’s tensor of spherical inclusions expresseghereV° is the volume of a representative unit cell in the micro-
in Eq. (A6). If the inhomogeneity is a rigid sphere, its equivalengtructure. If the inhomogeneity is a crack, the damage variable is

eigenstrain can be determined by identical to that of Budiansky and O’Conn¢ll1] defined in Eq.
3(1-19 [1-59 (2) just scaled by 4/3. For an inhomogeneity of finite sizep
Sk _ 0 * o - o0 :1,then
St e=¢e 2(4=57) | 1540 ||+5I).£. oy
134
(134) 0= o= y0 (137)

Naturally, =1 for the inhomogeneities of finite size, and then
Ve®9=V. Generally speaking, the Eshelby’s and energy-baseghich is just Gurson’s damage variabel4]), the void volume
equivalent eigenstrain can be expressed as fraction of a porous solid.
We call V®9 the generic damage measurement because it is
(135) : . o .
applicable to all types of inhomogeneities: cavities, weak and
Some quantities related to different inhomogeneities are listed strong inhomogeneities, and rigid inhomogeneities of infinitesimal
Table 1, where/*P=47/3a° is a reference size of a sphere withor finite sizes. It is also convenient to depict the damaging pro-
the radiusa. cesses of inhomogeneities B9 Consider a penny-shaped inho-
As shown in Table 1, all thél tensors of the different inhomo- mogeneity with the relative moduldg, and radius, (state 0, as
geneities are of the same order of magnitude. Note that shown in Fig. 6. The damaging process would t®: stiffness
= 3Vveag0: £29=1/2ve96 % I1: £°. Therefore, the siz&/°% of the degrading of the inhomogeneity, state~@; (b) debonding be-
energy-based equivalent inclusiéff9 becomes the characteristictveen the inhomogeneity and matrix, state-2; and(c) crack-
ing, state 3-5. All the state variations, mechanically or geometri-
cally, can be illustrated unitarily by a series of spheroids or
spheres of the energy-based equivalent inclusions, as shown in
Irrevesible damaging Fig. 6. The irreversible energy dissipation implies that the current
spheroid or sphere is always expanding during the damaging pro-
Cracking cess.
As shown in Eq.(126), U* =VeuUI=G, = S*%°®9. Similarly,
the S°9, which is the surface area of the energy-based equivalent

* * * _ T 0
e =negq,  Eoq=1liE

Debonding inclusion 09, is the generic measurement of the energy release
rate for the radius propagation. Note that the surface area of a
Stiffness degrading spheroid or sphere is four times of the area of the corresponding
[,>T>T, ellipse or circle in Fig. 6. From the thermodynamic point of view,
STATE T [RADIUS the G, is the drlvm_g force behln_d the radius propagation. Sl_nge
5 5 ” the current spheroid or sphere is always expanding, the driving
Inhomo- ——— force is always increasing, too.
geneity 1 B
2 |1 2
3101 3 9 Conclusion
Crack | 4 | 0 a
50 a, The Eshelby’s problem generally results in complicated formu-
lation even in a well-chosen local coordinate system. It looks
Fig. 6 The evolution of the energy-based equivalent inclusion quite difficult or even impossible to express the solutions explic-
09 during the damaging process of a penny-shaped inhomo- itly in Eshelby’s tensor as an entity in global coordinate system.
geneity: stiffness degrading, debonding, and cracking The present work demonstrates that such an approach is possible
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at least for penny-shaped inhomogeneities including cracks. The &

deduced eigenstrain and their asymptotic expressions are all in [£(£2—1)Y2—coth 1] if é>1

tensorial form which help us gain deeper insight into their subtle g= (&1 (A5)
relations. & ., . ) '
In order to describe the macroscopic behavior of microdefects, W[COS E-E(1-89)M7 if £<1

this work focus on the tensorial representation and the analysis of

energy disturbances caused by presence of microdefects. Furtifef=1, i.e.,a;=2a,=az=a, the Eshelby’s tensor of the spherical
more, the so-calle@nergy-based equivalent inclusion methisd inclusion is simply an isotropic tensor

introduced, as a certain generalization of Eshelby’s equivalent in- 5,1 4-5,

clusion method. For the inhomogeneities of finite size, both meth- Sk = 5 8+

ods are equivalent to each other. For the inhomogeneities of in- o11-v) 151-v»)
finitesimal size, e.g., penny-shaped inhomogeneities, the energy spheroidal inclusion approaches a penny-shaped inclusion if

based equivalent inclusion method can effectively remove the<1 orasa,, and then the Eshelby’s tensor can be further sim-
singularities of the size and eigenstrain of the Eshelby’s equivgiied as

lent inclusion. The energy-based equivalent inclusitf is al-

ways of finite size, and may be geometrically different with the 13-8v 1-2vw
corresponding inhomogeneity, unlike the Eshelby’s equivalent in- Snn= 5222me§, Saz=1— 1—v 4
clusion Q). For a penny-shaped inhomogeneity, the energy-based

(6idji+ 8 0k).  (AB)

equivalent method cannot describe the local stress field but can 8v—1 2v—1

accurately yield the energy disturbance, which is sufficient for Si120= SZlezmﬂfl Si135= 52233:ﬁ§

damage modeling. (A7)
The energy-based equivalent inclusions of penny-shaped inho- 4v+1

mogeneities are spheroids. Especially, & of a crack is a Seani= Sesz= 7 | 1+ =g, 7¢

sphere. The size of energy-based equivalent inclusiéff, can

be used as the generic damage measurement for all types of inho- v=2m 7—8v

mogeneities: cavities, weak and strong inhomogeneities, and rigid 1313~ S2s23=5 | 1+ 37— 7 €], ~

inhomogeneities of infinitesimal or finite sizes. TM&%based . .

volume fraction is consistent with the well-known damage varf\!l 0ther nonzero components are obtained by the cyclic permu-

ables of Budiansky and O’ConnédlL1] and Gursor{14]. tation of (1, 2, 3. If §-0 oras—0, the Eshelby's tensor ap-
proaches the limit

S305= Sr337™ S3005™ S3235~ 0.5,
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B Eshelby’s Equivalent Inclusion Method. Eshelby [2]
Appendix solved the problem of an ellipsoidal inhomogeneitydmuivalent

inclusion methodConsider an infinitely extended material with

A Eshelby’s Tensor. When an straire}; is prescribed in a the elastic moduIDﬂH, containing an ellipsoidal inhomogeneity
finite subdomair2 in a homogeneous materi@las shown in Fig. domain() as shown in Fig. (b) with the elastic modulDf,, . Let
1(a) and it is zero in the matri® — Q, then( is called an inclu- us denote the applied stress at infinity«bS{ and the correspond-
sion. This type of prescribed strairf, is called “eigenstrain.” If ing strain bysf}. &} has been introduced here arbitrarily in order
an ellipsoidal inclusion, as shown in Fig(bl, is prescribed by to simulate the inhomogeneity problem by use of the inclusion
uniform eigenstraimﬁ , the strain and stress fields become unimethod. Such an eigenstrain is called an equivalent eigenstrain.
form for the interior points inside the inclusidfi,2]). The elastic The stress disturbance and the strain disturbance are denoted by

straine;; in interior point is ojj andgj;, respectively. The total stress or actual streseﬁs
0

&1 =S el (AL) +0ij, and the total strain isj; +&;; . Hooke’s law is written as
0 _ 0 ;
where S is called Eshelby’s tensor and has the symmetry oijt ojj —Dﬁk|(8k|+8k|) in Q (B1)
Sijki = Sjik1 = Sijik - (A2) o +oij=Dfj(ep+ew) in D—Q.

The Eshelby’s tensor of an ellipsoidal inclusion is generally asso-Now consider an infinitely extended homogeneous material
ciated with some standard elliptic integrals. For a spheroidal isith the eIasticDinH everywhere, containing domail with an
clusion, i.e.a;=a,=a, the Eshelby’s tensor can be simplified aigenstraire}; . When this homogeneous material is subjected to
the applied straire;; at infinity, the resulting total stress and
Sk =Sk (v,6), &=— (A3)  strain, respectively, are|) +oij, e +e;;, andel+e;;—ef in
Q). Then, Hooke’s law yields

wherewv is the Poisson’s ratio of the material, for example, 0 o o oo
oi;+0i;=Djj (e +en—ei) in Q

B 1 3¢2 9 . oo (B2)
81111_82222_4(1_V) 2(52_1) 1_21}_m g O-ij+o-ij:Dijk|(8k|+8k|) in D—AQ.
(A4)  The necessary and sufficient condition for the equivalence of the
1 2 382 stresses and strains in the above two problems of inhomogeneity
Ssasfm 1-2v+ o1 1-2v+ 72-1/9 and inclusion is
where D (em+ew) =D (eR+en—er) in Q. (B3)
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If o) =D ep is a uniform stressg?; is also uniform in€) and

can be determined by EgA(Q). Therefore,

o= Dﬁkl(s(k)|+ SkimnEmn) = Diojkl(sgl+ ScimnEmn— €k1)
(B4)
from which si’} is determined. Evidentlyy;; :aﬂ- + 0 in Q. The
elastic strain energy for this system is

1 0 0
U:E D(Uij+Uij)(8ij+8ij)dD

2

1
= —f U%SﬂdD-i—
D

> fa?js;;dD:u%U*. (B5)
9

In this paperU* is also termed the energy disturbance,

E adexdD.
2 0 ij€ij

C Positive Definiteness of the €C* Tensor. The C and
C* tensors are defined in Eg2) and (23), respectively. In the

U*= (B6)

local coordinate systemyX,/X3 as shown in Fig. 2, the compo-

nents of the stress tenserare denoted

Ox  Txy Txz
o= Ty)( O'y O-yZ (Cl)
Tzx  Tzy O3z

whereo, 0,0, are along thes;, X, ,X3, axes, respectively. In
view of Eq. (23,

u*:—a:c*:o:ﬂa%i(rzwz) (C2)
2 2E7Z7 2p X Ty
where
w=%, sws1 C3)
Note that
U3:§0'32C20'3:%0'§+E(fo-iﬂ'gy),
(C4)
0 0 7y
o;=| 0 0 7y,
Tzx  Tzy Oz

Therefore

*_1 -(C C* . _1 C: + 1 2 w 2
u—u 720'.( ).0720'”. Loy ZMTX), T
230’ :C:cr—ﬂtr2
2 n n 2E z
1 1 -v  —v o
:E{Uwa’yvaz} -V 1 v Ty (Ce)
—-v —v 1-w]\Oz

The 3X 3 matrix has three eigenvalues:

31°—2v+1

)\l:O, )\2: 1—

>0, Nz=1+v>0 for O<v»=<0.5,
(C7)

so the matrix is positive semidefinite. Therefore, the telse€*
is also a positive semidefinite tensor.
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On the Simulation of
J.o.wmer B Discontinuous Functions

Mem. ASME
National Advanced Driving Simulator
and Simulation Center, Discontinuous function constraints arise during the calculation of surface contact, stic-
The University of lowa, tion, and friction effects in studies of the behavior of complex systems. These nonlinear
2401 Oakdale Boulevard, effects are mathematically defined by inequality constraints of the fergn@(t),t). The
lowa City, 1A 52242-5003 unknown in the problem is the time§,twhen the equality condition is reached. This
e-mail: jturner@nads-sc.uiowa.edu paper presents an exact solution fdr, twhich is obtained by introducing a slack variable
that replaces time as the independent variable, leading to an extended state-space that is
noniteratively integrated to the constraint surface. Several applications are presented to
demonstrate the method.DOI: 10.1115/1.1387022
1 Introduction multiple impulsive inputs. A strategy is presented for handling

roblems characterized by intermittent contact, where multiple

Dlscontlnuo_us system dynaml_cs m_odels descrlbe_ many Prad, iraints can be active at one time in Section 5. Conclusions are
cal problems in science and engineering. Mathematically, the d esented in Section 6

continuous system models are modeled by inequality constraints:

As shown in Fig. 1 the motion is divided into different motion

phases, where different dynamical models are valid. Computatich- Current Approaches

ally the problem is to find the timé}, when the old motion phase  Several techniques have been used for handling problems with
is replaced by a new motion phag@arver[1], Ellison[2], and nonlinear and discontinuous behaviors. The computational prob-
Enright et al[3]). Examples of discontinuous constraints includeem is that standard numerical integration algorithms have been
(i) the height above a surfac@i) the switching of the sign of a derived under the assumption that the variables being integrated
velocity component(iii) impact phenomendjv) hysteresis(v) are continuous through all the derivatives being sam{fdgppov
structure varying systems, vi) a force component exceeding a4], Halin [5], and Pfeiffer[6]). Discontinuous problems, how-
critical value. Detecting when a discontinuous event takes placeeiger, violate this basic assumption by introducing discontinuous
straightforward; one simply monitors sign changes in the cochanges into the first or higher derivatives of the system models.
straints. The challenge is finding the timé&, because it is im- (see Fig. 2a)). As a result, it is not surprising that standard nu-
plicitly defined as a function of the constraint condition. Findingnerical methods have problems handling discontinuous problems.
t* is important, because the governing differential equations afefurther complication is that a discontinuous event can occur at
assumed to change discontinuouslyt’at any time. As a result, algorithms cannot be designed in advance to

Several conventional approaches are presented for handlﬂ@”ge models at predetermined times to avoid discontinuous sys-
nonlinear problems subject to discontinuous inequality constraf®m behaviors. _ ) _ o
conditions. The strengths and weaknesses of these approaches dfediscontinuous event is detected during an integration time
discussed. The main contribution of this paper is the presentatigi§P Py monitoring sign changes in the inequality constrases

of a new method for noniteratively localizirtg . This approach Fig. 3. The most nase strategy for handling nonlinear problems
permits an accurate integration of the response of discontinuogs

simply to ignore the existence of the discontinuous system
systems. The advantages of the new method are(thabe inte- changes. A potential risk of this approach is that the integration
gration algorithm never passes over a singular evémreby algorithm can become unstable or be subject to unknown large

avoiding numerical instabilitigs (2) no iteration is required(3) |r:_tegtr_at|on irrorsh_crl]t??crllyl,_tthls ﬁpp_roach gf ltJ_nacceptabIe fordap-
conventional integration routines can be used, @dittle com- plications where figh-fidelity behavior predictions are required.

putational overhead is required to implement the algorithm. Di _The ideal solution is to noniteratively integrate the solution to
. o S ) e
continuous system behaviors that can be handled include matef@ Switch timet*, change the equations being integrated, and

properties, nonlinear behaviors, geometry, kinematic effects, ifgstart the integration. This approach avoids having the numerical

pact, intermittent contact, and other sources. integration algorithm sample the discontinuous changes in the

The paper consists of six major sections. Current approacr@verning differential equations. The challenge is findihg be-
for handling discontinuous system behaviors are presented in Se@use it is implicitly defined by the inequality constraint and the
tion 2. The slack variable algorithm is presented in Section 3. TH¥linear nature of the governing differential equations.
section covers mathematical models, the slack variable algorithmFOuUr approaches are frequently used for simulating systems
the differential equation fodt/ds, and the extended state—spacé“{'th discontinuous behaviors. First, one can use a very small step-
model. Two applications are presented in Section 4. One modf€ or variable stgp-5|ze control algorlthm. This a_pproach brings
consists of a simple one-dimensional problem that can be handigg System dynamics very closetta This approach is successful
analytically. The second application considers a toy woodpecki€f many applications; however, very long run times are possible
problem that is highly nonlinear in its behavior because the nurf@r sensitive problems. Second, root finding strategies or
ber of degrees-of-freedom vary and the system is subjectedd@ivative-based iterative algorithms can be introduced for local-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Model 1 Valid J Model 2 Valid
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 12, N
2000; final revision, Apr. 16, 2001. Associate Editor: N. C. Perkins. Discussion on 0>g 0=g 0<g

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and fo t* t;
will be accepted until four months after final publication of the paper itself in the
ASME JOURNAL OF APPLIED MECHANICS. Fig. 1 Discontinuous model motion phases
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Fig. 2 (a) State variable discontinuity,
able discontinuity
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/ Discontinuity
t t* t
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First Derivative
State Variable
Discontinuity

(b) smoothed state vari-

[ e |
Detected

n tn-*— 1 tn+2

s, that measures the distance to the equality constraint condition
(see Fig. 3 The slack variable is described as a distance-like
variable because in different problem formulatiohsan have
units of length, velocity, force, work, potential, or any valid gen-
eralized coordinate. There are two significant benefits of this
transformation. First, the inequality constraint is converted into an
equality constraint. Second, the new equality constraint defines a
functional relationship between time and the slack variable. The
key step in the algorithm is that the functional relationship be-
tween time and the slack variable can be differentiated to provide
a differential equation fodt/ds. The equation fodt/ds permits

the originalimplicit n-dimensional problem for solving fdr* to

be embedded in aexplicit (n+ 1)-dimensional problem. The ex-
tended state-space model permits time to be integrated as a func-
tion of the slack variable, thereby eliminating the need for an
iterative root solving procedure.

In the (n+1)-dimension problem formulation time, is re-
placed with the slack variabls, as the independent variable, so
thatt=t(s). The limits of integration for ther(+ 1)-dimensional
problem formulation are defined as s, to s=0, where the upper
limit of integration,s=0, denotes that the system is on the con-
straint surface at the end of the integration. With the state on the
constraint surface, the discontinuous changes in the system dy-
namics are introduced. The integration process is then restarted by
usingx(t*(0)) as theinitial condition for the numerical method.
The integration process then continues until either a new discon-
tinuity is encountered or the end of the integration interval has
been reached. The flow diagram for the algorithm is presented in
Fig. 4.

SO:g(X(tn)3tn)

Fig. 3 Discontinuity detected in the time interval and slack
variable initial condition

where

izing t*. This approach increases algorithm complexity, and many
interations may be required for predictint. Third, a low-order
low-accuracy integration algorithm that is insensitive to the pres-
ence of a discontinuity can be used. The risk of this approach is
that large undetected errors can develop in the integrated solution,
yielding meaningless results. Fourth, smoothing algorithms,
which attempt to reduce the strength of the discontinuity by push-
ing the discontinuous changes in the system behaviors into higher
derivatives, are introduced. Figure@Rand 2b) present an ex-
ample of a control-smoothing algorithm. In this example, the in-
stantaneous jump nonlinearity is replaced by a transition region
that spreads the discontinuous change over a finite time interval
(see Fig. &)). The problem with this approach is that the real
physics is not modeled and that the resulting solution may be
meaningless. In all four cases the normal guarantees of solution
accuracy are potentially compromised. All of these topics are thor-
oughly reviewed in Chapter 6 of Soellner and Fuli&r

In summary, the basic problem is thit is implicitly defined
by the constraint and the nonlinear character of the governing
equations. The implicit nature of the problem makes the problem
hard to deal with numerically. What is well known is the change
in the inequality constraint that is required to reach the equality
condition that defines*. This observation motivates a change of
variables solution technique in Section 3. The new algorithm re-
places time as the independent variable, with a slack variable that
measures the distance to the equality condition for the constraint.
The advantage of this approach is that the slack variable problem
formulation permits the nonlinear system to be noniteratively in-
tegrated to the constraint surface.

3 Slack Variable Method
During a simulation, when a sign change is detected in a con-

dx—f t =b
T (x,t), Xo=

C(x(t

).t

3.1 Mathematical Model. The constrained equations of
motion for a physical system can be cast in the first-order form

(1)

)=0 (1)

Flow Diagram for Slack Variable Integration
for Discontinuous Functions

Initialize Problem

Xg to, At
] Integrate One Step
i=f(xt)
KXo theps X
.
Check for Sign Yes
Change in Re-Set IC’s
Constraints Xp T
NO S°=C(Xn,tn)
Save Plot Integrate One Step
Data " o aT
No 1 9,0 Kz) s *ﬂ
t >t dt _ (g)’ dc B
n+l f - [ o f+ &
+1s tn
e Yes Integrate From
sy to 0

straint, a change of variables is introduced that replaces the in@®y. 4 Flow diagram for the slack variable integration algo-

pendent variable time, with an exact distance-like slack variable rithm
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wherex denotes theX 1 state vectorx, denotes the initial con- The solution for Eq(4) is valid as long as thg ]#0. Equation(4)

dition vector for the statef denotes timed( )/dt denotes the is further simplified by recalling Eq.la), leading to

derivative with respect to time, and(*) defines the constraint

surface for the inequality constraint. dt
Equation (1b) is monitored during each time intervt, ,t, ds

+h] for a change in sign fo€(*) ([7]) (see Fig. 3. As long as

C(*) #0, the numerical integration process is straightforward al . B h
) 9 P 9 stance to the constraint surface. What is still unknowahx&l s,

accurate. Detecting the sign change @) is important because . ) - X
numerical algorithms are not designed to handle discontinuo¥Y§'Ch defines how the state changes as a function of the distance

changes in the derivatives being sampled. Section 3.2 introduces éhe constraint surface. Equathna) an_d(5) are used to define
. : . . . an extended state-space model in Section 3.3.3.

slack variable algorithm that permit$ to be determined nonit-

eratively. 3.3.3 Extended State-Space Modélith s as the new inde-

. . . . pendent variable an extended+ 1)-dimensional state-space is
3.2 Slack Variable Algorithm. Assuming that a sign S(iiefined by the following variable:

change has been detected during the current integration time step

(i.e., [tn,tat _h]), the solution for the pairt) is reset to X, ,t,). y(s)=[x(t(s)),t(s)] (6)

The inequality constraint of Eq.lb) is locally redefinedas an

equality constraint by introducing a slack variabdgleading to  wherey is the (h+1) X 1 extended state-space model a(s) is
now treated as a dependent variable. The initial conditiort fer

s—C(x(1),1)=0 @ t(sp)=t, (see Fig. 3 The initial condition fory is y(sp)

wheres represents a distance-like measure to the equality conei{x(t,),t,]. The interval for the slack variable integrationds

tion of Eq. (1b). The initial value fors is defined ass,, where €[s,0].

so=C(x(t,),t,). The desired value for the slack variabless  Two steps are required for defining the differential equation for

=0, which corresponds to the conditi@(x(t*),t*)=0, where Y. First, from Eq.(5) the differential equatiordt/ds is already

t* is the unknown time for the discontinuous event. available. Second, the chain rule of calculus is applied to trans-
form Eg. (1a) from a function oft to a function ofs, as follows:

-1

JC\T  oC
R— + R—
X at

®)

rJgjquation(s) defines the rate of change of time as a function of the
i

3.3.1 Change of Variables TransformationEquation(2) de-
fines a functional relationship betweeands. With t as the inde- dx dxds
pendent variable, Eq1) is hard to solve. However, § becomes dt  dsdt =f
the independent variable then Ed) is easy to solve. This obser-
vation motivates us to introduceas the independent variable byleading to the transformed equation
assuming that=t(s) in Eq. (2), leading to

dx dt (aC)T ac}l

f+ . ()]

5= fge=f

s=C(x(t(s)),t(s)). 3 i 3
Two steps are required for transforming Ed) so thatt=t(s).
First, Eq.(3) is used to create a differential equation ttyds. Equations(5) and (7) provide the required differential equations
Second, Eq(1a) is transformed so thatbecomes the independentfor solving the slack variable algorithm. By combining E¢S)
variable. For these transformations to be well defined, it is a8nd(7), the extended state-space differential equations can be cast
sumed that Eq(3) has continuous first-order partial derivative forin the form
s, X, andt. Equation(3) is used in Section 3.3.2 for deriving a

differential equation fodt/ds. d_x
) ) i . dy ds f\[/oC\T oC]™?
3.3.2 Differential Equation for t(s). Assuming that Eq(3) s at | =)ok +— (8)
possesses the required continuous partial derivatives, a differential S 2 at

equation is obtained fatt/ds, by using the chain rule of calculus ds

to differentiate Eq(3) with respect tcs, one obtains which is subject to the following initial conditions fo«(s) and

aC\Tdx dt 4C dt t(s):
=| — _—t — —
Jx| dt ds gt ds X(Sy) X(t,)
0 n
where the solution fodt/ds follows as (t(So) ) :( t, 9)
E: ﬁ T2(+ ﬁ o ) The solution fory(s) is integrated to the constraint surface by
ds ox) dt ot solving the following set of equations:

Table 1 Equations for time localization algorithm for discontinuous functions

Original State-Space Modei
Independent variablé:

X(t)=x(0)+ ffdt
fo

(Nominal governing equations subject to: G=C(x(t),t)

iterative methods required to firtd
Independent variables X(0)\  (X(s) £
= + ( ) f+—
(t<0>) t<so>) J: 1 a
Non-iterative method to find(0)=t*

(Equations for locally integrating to a constraint surface.
Note t(0) is the discontinuous event time.

Extended State-Space Model
-1

dt

X

b
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(X(O)) (X(So)) JO( f) Tf aC
o)) i) "Il Tt
The left-hand side of Eq(10) providesx(0) on the constraint
surface and(0)=t*, which is the originally unknown discon-
tinuous event time. Sincg, is typically small, a single integration
step in Eq.(9) is all that is generally required. The left-hand side
of Eq. (10) also defines the initial conditions for restarting the
integration of Eq(1a) after the discontinuous changes have been
introduced into the differential equatiofisee Fig. 4.

Equations(1a) and (10) provide a complete algorithm for nu-
merically integrating the response of systems subject to discon-
tinuous behaviors. The governing equations are summarized in
Table 1. This algorithm is particularly useful for problems char-
acterized by friction, stiction, variable topology, and multiple/
intermittent contact dynamics.

aC
ax

-1 H
} ds.  (10) (o

Fig. 5 Toy woodpecker problem
4 Applications

Two applications are presented that describe how the slack vari-
able transformation can be applied in different situations. The first
problem considers a one-dimensional linear problem where the
constraint depends on a specific location being reached. The sec- ) ) N ]
ond problem considers a generalization to a variable topolog§herex(0)=b is the desired boundary condition far Leaving
problem with two to four degrees-of-freedom, while being subje@nly the second integral to be evaluated as
to multiple discontinuous impulsive events. 1 (9 ds -1(9 d

f - ( —In(b)+In

0
x(0)=b/10+ f (—1)ds=b
9b/10

4.1 One-Dimensional Problem. These ideas are made'®)= 3 o0 X @ JopnP—S 10 la
more concrete by considering the following problem. Assuming
that Eq.(1a) is defined by the following one-degree-of-freedom  =In(10)/a
system

where the equality constraint has been used to simplify the inte-
X=ax, Xo=b/10; a,>b=0 gral. The final result is that(0)=In(10)/a is the predicted time
for constraint of Eq.(11) to be identically zero. This prediction
can be checked in this special case by analytically integrating the
0=h—x. original differential equation and imposing the initial condition,
yielding the solution

where the inequality constraint of E(lb) becomes

The inequality constraint requiresto be less tha. Introducing
the slack variables, the transformed inequality constraint is cast
in the form

b
_ at_ at
X(t)=Xq€ 10e .

s=b—x. This equation is solved for the time whar=b, yielding

At t=tq, from the initial condition forxg, it follows that the t=In(10)/a
distance to the constraint surfacesis=9b/10. Assuming thas
replaces as the independent variakliee., t=1t(s)), the constraint
is transformed as follows:

s=b—x(t(s)) 11) 4.2 A Toy Woodpecker Modeling Problem. The algorithm
’ of Section 3 is applied to the problem of modeling the motions of
The differential equation fat(s) is obtained by differentiating Eq. a toy woodpecker that is attached to a sleeve, while it slides down
(11) with respect tos, leading to a rod. The problem nonlinearities arise beca{igethe toy expe-
ds dx dt dt riences multiplle impulse quds, ai?) the.number of degrees-of-.
= (- 1)*(ax)*— freedom are either free or fixed depending on the angular motion
dx dt ds ds of the toy. This problem is taken from Pfeiff¢é] and Soellner
and Finrer[7] (see Fig. 5. The toy woodpecker model consists of

which agrees with the prediction obtained from integrating the
extended state-space formulation.

which yields the following differential equation fa(s):
dt -1 » a rod where the woodpecker slides down,
= (12) * a sleeve that glides down the rod with some play allowed,
From Egs.(10) and (12) the general solution for the extended * & the woodpecker is connected to the sleeve by a torsional
state-space is cast in the form spring.
x(0) b/10 0 [ax The nonlinear system behaviors arise from several sources. The
t(O)):( 0 )+j ( 1 [(—1)(ax)+0] 'ds system has two degrees-of-freedom. One rotatiohalefines the
9b/10 angle between the rod and the sleeve. One translatinrdgfines
or the motion of the combined sleeve/woodpecker when sliding mo-

tions are possible down the rod. The complexity of the problem

x(0) b/10 0 -1 arises because the sleeve sliding motion stops for the sleeve/
to/-\ o + obzo! — 1/ax ds. woodpecker system whd|>|6,|. Another complexity is that
the system experiences an impulsive load when the woodpecker
Integrating the trivial top equation leads to strikes the rod whed@= — 6y, , wheref,< 6x,. The sleeve mo-
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tion is modeled as a massless joiRfeiffer [6]). Only small os- Angular Motion Phase Diagram
cillations are considered. The governing differential equations are

D
D

dz/Edqtua(t)igm 1: (0 is the only degree-of-freedong=constant, ] & —
- 3 15 =
(1,+myb?) 6= —cO+m,bg g Y"//E \\\
Equation 2:(two degrees-of-freedom 5 s 4 . 02 04 //Ja s
R SR
z (Mg +my)g, Angle (Rad.)

myb (my+my)
The impact of the woodpecker bill is elastic. The other impacfgg. 6 Phase variable plot for woodpecker angle-angular rate

are nonelastic and lead to jumps in the angular velodityThe plot
impulse changes to the angular velocity are defined by
* impact at the top of the sleeve Phase 5 — fx;<60<0,: Phase 4 ends whed=— 6y,
. . mb . the rotational velocity is impulsively changed, the sleeve motion
o =(1—d3)( 0+ Wz*) , is released and the sleeve/woodpecker again moves down the rod.
2T My This phase continues untfl= 6., the rotational motion is im-
impact at the bottom of the sleeve pulsively changed, the sleeve motion stops, and Phase 1 begins
again.
0t =(1—dy| 6+ m—zbz'z‘), 4.2.2 Numerical Simulation Results for the Woodpecker
I2+mb Rotational/Translational Impact ProblemA standard fourth-
impact of the woodpecker bill order Runge-Kutta integration algorithm is used with a fixed in-
- - tegration step size to generate the simulation regtit&lbrand
0=-10 [8], and Halin[5]). Several simulations have been run to identify

the number of nonlinear events that occur during a one-second
the velocities after the impact simulation. As shown in Table 2, 2000 integration time-steps are
The constants for the problem have been taken from Pfeiﬁreqmred before the number of nonlinear events becomes insensi-

five to the integration step-size
[6]: b=0.0015m, a=0.025m, m;=0.003 kg, m,=0.0045 kg, . : PR _ .
,=7% 10”7 kg-?, c=0.0056 Nm, d=0.04766,d, = 0.18335, Simulation results are presented in Figs. 6—12. A phase diagram

of the angular woodpecker motion is presented in Fig. 6. The
9=9.81m/set, ;=10 deg, b= 12 deg. motion is seen to complete approximately one complete cycle
4.2.1 Distinct Motion Phases.The motion is divided into Pefore the motion history repeats in the phase space.
five distinct phases. The angular motion of the woodpecker de-The angular time history motion is presented in Fig. 7. The
fines each phase. The motion phases are monitored during a sif@fion is seen to be nearly periodic. The lower limit of the angu-
lation to determine when the number of degrees-of-freedol@ motion is governed by the Woodpecker’s bill striking the rod
change and when impulse loads are applied to system. The AR reversing the_ direction of the motion. The motion is basically
motion phases are described as follows: smooth and continuous.
Phase 1 6>6x,: The woodpecker swings to the right until
it reaches its maximum amplitude and then swings back to the

whered™, 7z~ are the velocities before the impact apt, z* are

left. During this phase the translational degree-of-freedom is Woodpecker Rotation History
locked.
Phase 2 —6x,<6<6y,: Phase 1 ends wheé= 6y, and __ o8
the translational degree-of-freedom is released so that the sleeve/ § o6
woodpecker system can move downward. The system experiences% 04 N\ /\ /\ /\ /\ /\ /\
WA AWAWAWAWAWA

an impulse when the translational motion starts.

Phase 3 — 6x,<6=<-06,: Phase 2 ends whefi=— 6y,
the rotational velocity impulsively changes, and the impact stops
the sleeve motion.

Phase 4 — 6x,<6<—0k,: Phase 3 ends whefi=— 6y,
the woodpecker touches the rod with its bill, and the rotational
velocity impulsively reverses direction. The sleeve motion re-
mains locked.

WAL WARWARWARWERW/
P IRV VA VA VA V AV

Rotation Angl
o

Time (Sec.) -- Total Time 1 Sec.

Fig. 7 Woodpecker angle time history

Woodpecker Rotational Rate History

Table 2 Number of nonlinear event as a function of the num- 20

ber of integration steps g 15 \ \ i\\ r\\ .\\ I.\\

Number of Integration Steps Number of Events Detected E 12 \\ // \\ I/A \\ '/A‘ \\ I/A‘ \\ '/A‘ \\ '/A‘ \\

100 10 0 N VA W N VO A Y O

200 25 Tl AT VT V[ | WY

500 25 E sl L\ W A\

1000 30 5 b2 A} AY) Y Y

2000 31 =220

5000 31 Time (Sec.) -- Total Time 1 Sec.

10,000 31

Fig. 8 Woodpecker angular rate time history
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Woodpecker Height on Rod The coupled rotational-translational motion goes through four
phases of motion that are defined by the angular motion and im-

12 pulsive constraint inputs. There is a fifth motion phase, but it is
£ ! solely defined by motion reversal when the woodpecker bill hits
g 08 = the rod. The motion phase history is presented in Fig. 11. The
% 0.6 degree-of-freedom model change during the motion and Fig. 12
2 04 I presents the changes in the number of model degrees-of-freedom.
€ o2 ,_r—r A discontinuous event has typically been detected W&

g o ~0.005. After the one-step integration algorithm of Ef0) has
S been applied the value for the constraint has been found to be
’ ' |C|~10"12

Fig. 9 Woodpecker height on rod

The angular rate time history is presented in Fig. 8. Disconting)- Intermittent Constraint Handling

ous changes in the angular rates are present. The motion is nothe solution for Eq(1) is complicated when the physical ap-
symmetric with respect to the time axis. These differences apécation must track several constraints simultaneously. The slack
attributed to the two impulsive impacts that take place when tiv@riable formulation only depends on identifying the next con-
angle is negative, verses the single impulsive impact that takeigaint to reach zero. As a result, if one or more constraints pass
place when the angle is positive. through zero during the sampling of Ed.), an estimate is made
The woodpecker’s height on the rod is presented in Fig. 9. Ty extrapolating an estimate fa¥ from all of the active con-
motion is seen to highly discontinuous. Multiple stops and stargéraints. Taylor expanding slack variable for each active constraint
occur during the motion. leads to
The woodpecker’s translational velocity relative to the rod is
presented in Fig. 9. Very sharp changes in the translational veloc-

= ds
ity are observed. si(t7)~=si(ty) + 57 (F —to) (13)

Whereﬁ is the estimated time foith constraint to reach zero.

Woodpecker Translational Rate on Rod . . . .
Equation(13) is solved by setting the left-hand side to zero, lead-

05 ing to the following Newton-like estimate fdf:
iﬁ ~ 0.4 -
gi 0.3 ti %tn_si/dﬁ /dt.
EE o2 _ _ . .
2= l I l l / I The smallest estimate fdr defines the constraint equation to be
E o1 ) .
. [ / I / I/ [/ I / I / used for the extended state-space transformation of .
Time (Sec.) -- Total Time 1 Sec.
Fig. 10 Woodpecker translational velocity relative to the rod 5 Conclusions

This paper has presented a slack variable formulation for han-
dling inequality constraints. The new algorithm eliminates the
need for iterative approaches for solving constraints for the exact
time that a constraint is exactly satisfied. A slack variable that
converts the inequality constraint into an equality constraint is
introduced. The key step in the algorithm is that the slack variable
replaces time as the independent variable. The transformed con-
straint equation is used to define a differential equation for time as
a function of the slack variable. The original differential equations
are transformed to become a function of the slack variable. An
extended state-space is defined that permits the state to be nonit-
R eratively integrated to the cqnstraint_ surface.' The advantages of

" ) the new method are thét) the integration algorithm never passes
over a singular evenfthereby, avoiding numerical instabilities
(2) no iteration is required(3) conventional integration routines
can be used, an@) little computational overhead is required to
Model Degree of Freedom History implement the method. These algorithms support interdisciplinary
problems in solid mechanics, structures, dynamics and control,
where damping, friction, stiction, and variable topology problems
arise. Two examples are presented that demonstrate the effective-
ness of the slack variable formulation.

Nonlinear Motion Phases

o

EN

w

T

Motion Phase (1,2,3,4)

o

Fig. 11 Nonlinear phase motion time history

w > o

N
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Relationship Between the
| External Force and the Specific
Lot | Work of Fracture R for
e serommiis | Oteady-State Tearing and Peeling
mamnoerere. | Of El@Stoplastic Materials

University of Reading,

Whiteknights,
P. 0. Box 225, A simple relationship is obtained between the external force F and the fracture toughness

Reading RG6 2AY, UK R for thin sheets in steady state elastoplastic combined tearing and peeling along self-
similar paths. The relationship depends only on the material properties(Eand « for
an elastoplastic material with linear hardening) and strip cross section (B and H). An
earlier analysis (which incorporates transient tearing and peeling) requires lengthy com-
putations over the whole length of the strip. The present analysis avoids that complica-
tion. Experiments in steady-state agree with the thediyOl: 10.1115/1.1387020

1 Introduction has been presented by Liu et ] for the tearing and peeling of
n end-loaded cantilever strip, to include both the transient con-

The relationship between the external loads and the spec@zf. : . ; . L :
Itions of increasing force during tearing from initial loading, up

work of fractureR (fracture toughnegsfor j strips tearing and
peeling(e.g., as shown in Fig.(&)) can be obtained fron{1,2])

i i j j
> Fdu+ Y, (M)idgi= >, (dA;+dl)+ D, RdA,
=1 =1 =1 =1

1)

whereF and M, are the external force and moment, aha and

de are the incremental displacement and rotation angle at the
loading point,dA anddI' are the incremental elastic and plastic
work in each stripdA is the incremental area of fracture surface
and RdA the incremental fracture work. The strip is commonly
treated as a cantilever in the analysis for tearing and peeling, as
shown in Fig. 1b), with axial stretching being neglectgi®—6]).

For moment loading at the tip of the cantilever, the analysis of
deformation is quite straightforward and the elastic and plastic
work is easy to calculate, since the bending moment and curvature Lo
are the same at any point of the cantilever. For tearing and peeling
along self-similar pathéwithout the change of strip cross sectipn L
the relationship between the moment and fracture toughness is (@)
given in Eq.(14a) by Liu et al.[2] for elastic deformation and, for
strips in elastoplastic deformation, it can be obtained from Egs.

(10b) and (14b) in Liu et al. [2]. However, experimentally, it is o x
very difficult to achieve a pure bending condition: A double roller
experimental system was used by Yu et &].and Muscat-Fenech ™
and Atkins[5] to test the tearing fracture toughness of thin plate, s

but it was found that the tear legs disengage from the roller to
form their own natural radii of curvature and the curvature is no S}
longer constant near the tearing front. For tearing and peeling of
thin plate with a concentrated force at the end of the strip, the
analysis of strip deflection is very complicated since it is usually
associated with large deflectiofj2,7]). Even so, the full analysis
f
o /
m

tearing surface

peeling surface

Current address: Advantica Technologies, Ltd., Ashby Road, Loughborough, Le-
icestershire LE11 3GA, UK.
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JOURNAL OF APPLIED MECHANICS. strip during the tearing and peeling propagation
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to steady-state tearing at constant force. The steady-state condiffon Elastic and Plastic Work

will be attainedprovidingthe “trouser leg” is long enougfi.e., a

long enough starting lengttor that the tear propagates to a suf-

ficiently long length. Magnitudes of the length of tear and peé:l

required to achieve a steady state are discussed later in this paper. fﬁ fdﬁ/ds
Mdo=

When a beam lengttiL is bent by a momen¥l with curvature
hanges from zero td6/dS, the elastic workg,, is

de
i

The steady-state condition for tearing and peeling appears to start E,= as

just after the rotation angle of the cantilever at the loading point at
the end of the beam, reaches the force loading atglen Fig. where
1(b)) whence it remains unchanged subsequently. This observa-

Mg [
dL=—| mdkdL, (2a)

0 0 LOO

tion has important implications, since for an increment of tearing de

lengthdL, (i) the work due to the external foréeis FdL, (ii) the 6= d_Sd L, (2b)
incremental elastic and plastic work in the strip is equal to the

work of the newly increased beam length bending with curva- do do

ture from zero to its maximum value and returning to zero, and ©= 45~ Logs’ (2c)

(ii ) the incremental fracture work is equal to the fracture tough-
ness times the increased fracture surface associated diith s
Therefore, instead of calculating the change of elastic and plastic 5= — (2d)
work along the whole cantileveas done by Liu et al.2]), only Lo

the work in the newly created part of the stdj during steady-
state fracture propagation is needed in Eg.to obtain the rela-
tionship between the external force and the fracture toughness. Mg’

The present paper discusses the relationship between the exter- .
nal force and fracture toughness in steady-state tearing and peel /S the original length of beanthe length before the fracture

ing thin sheets made of elastoplastic material with linear hardepterts to propagaleSis the intrinsic coordinate of a sectiow,e is

ing shown in Fig. 2. It is assumed that all strips are identical arfj€ Pending moment at the elastic limit and equals’c, /6 for
tearing and peeling occurs in a self-similar manner, i.e., there is fRftangular cross sectiol and H are the width and depth of
“tearing to a point” ([5]) so that the cross section of the stripd?€@m, respectively, and, is the yield stress. _
remains the same throughout. Figure 3 shows the arrangement dror an elastoplastic material with linear strain hardening, the
(a) two strips tearing“trouser tearing’) and (b) two strips peel- relationship betwe_en nondl_menS|onaI b_endlng momeand cur-
ing. The relationship between bending moment and curvature ¥ture« was obtained by Liu et a[.7], viz:

(2¢)

an elastoplastic cantilever is given by Liu et []; the relation- (1) elastic deformationg=<g, or a=1
ship between the fracture toughness and curvature in the fracture p
front is obtained by Liu et al[2] and the magnitude of this cur- m=—, (39)
vature is maximum during fracture propagation. B
(i) plastic loadingx>g
1 ak
Y aE m=(1-a)(3— %k %)+ —, (3b)
2 B
oy | (iii) elastoplastic deformation with partial linear unloading,
k=(1-a)* —(2-a)B
~ (1-a)[ 3- g 22 1 & (30
E m= - - - K — 4L -,
2 Bl B
: (iv) elastoplastic deformation with partial reverse plastic loading,
&y 3 k<(l-a)k* —(2—a)B
1 aA 1
— _ _ 3p2p—2_ _ 2, % —2
m 2(l a)(2—a)°B°A B 2(1 a)Bk
~oy | 3 2
" - 5(1_ a)’, (3d)

, . N , , in all of which four relations
Fig. 2 Stress-strain relationship of strip material

MeLO
(@) (b) B=Er (3
A=(1—a)k* — k. (3f)

E is the Young’s modulusg is the ratio of plastic modulus to
elastic Young’s modulus ane is the maximum nondimensional
curvature when the unloading starts.

Substituting Egs(3) into Eq. (2a), we obtain

(i) for O=k<p, or a=1

~ MdL «?

=L, B (4a)

Fig. 3 The arrangement for two strips tearing and peeling (i) for Bsk<xk*
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By M0t 31— ay et (- a) B = 3(1 f= Lo &b
=0, |“ (1-a)k+(1-a)B« (1-a)B|, =W, (6b)
) BLNar+( ) pd
nyre+(N—ny)r
(iii) for (1—a)x* —(2— @) f<x=<k* D= — j e (6¢)
E —MedL[KZJr(l ) (3 i 2 2K*) ER
T2, | B “ “ Bl =gz, (6d)
* 2 Uy
T +2ﬂ2K*1—3,8H, (4c) ER
A =12 (69)
(iv) for k<(1—a)x* —(2—a)B<k* Ty
ML (a . . Ep=dA+dr. (6f)
— -1 -
LTI {EA H(1-a)|(2=a)"BA™ =Bk "k R, andR, are the tearing fracture and peeling fracture toughness,

respectively.
The relationship between curvature and fracture toughness is
given in Egs.(10) of Liu et al. [2] with ko= «* and

* 2

K
-3(1-a)k+a 5 +3(1—a)(2— a)k* +2B%* 1

K*Z
—3(5-4a+a?)B ] (4d) D= 7 for k*<p, or a=1 (7a)
Therefore, when the part of beam of length is bent with and
curvature changing from zero te* then returning to zero, we 2 B
have D:a?—Z(l—a)K—*-i-?)(l—a), for k*>pB. (7b)
E,=0, for x*<pB, or a=1 (52 . )
The relationship between the external forcand the fracture
MedL K*? B? , 2« toughnessD for steady-state fracture process can be obtained
Ep= (1-a) +2-5-3B|, for B<«*<7——B  from Egs.(5), (6), and(7) with E,=dA +dT.
2L B K -« 4
(5h) When k* > g, Eq. (7) gives
and K*
M.dL w2 F:ﬁ for =0 (83)
—__ € _ _ K _ _ *
Ep= T {(1 a)l a(2—a) B +3(1-a)(2—a)k and
2 K* 1—a 1/3 1—a 1/3
—3(5—4a+a®p +[(2—a)3+2(l—a)]f—*], F: T+ VA| + — \/Z} for a>0 and A=0
5 (8b)
-
> or
for >1_a,8. (5¢)
*
Equations(5) show that when the curvature of a part of beam *_ _, | /i[D_g(l_ a)]cosw, for >0 and A<O
dL changes from zero to a valué <g then returns to zero, all B 3a '
the elastic energy in the beam is released kit 0. However, (80
after it enters plastic deformation witk>g, a reverse bending \;here
moment is required to bend the beam back to zero curvature for
which the associated worlk,>0. 3(1-a)-D® (1—a)?
A= + > (8d)
3a o
and
3 External Force F and Fracture ToughnessR
It has been showi(2,4]) that during steady-state fracture the 0= Ecosl[ 3(1-a) A/ 3a . (8e)
external force at the tip of a strip is a constant. It appears that the 3 D-3(1-a) VD-3(1-a)

incremental elasticdA) and plastic @1") work in a strip is equal (a) For elastic deformation*<g, f<p/2, or a=1.
to that of the newly created strip length. bending with curva- ~“\yhen *<pB, or a=1 dA+dl =E.=0 and Eq.(6a) gives
ture from zero to the maximum valu€' and returning to zero, ' ' b

wheredA +dI'=Ey in Section 2 above, odA +dI'=E, in Eq.

(1). It is clear([2]) that the curvature at the fracture front increases f=5DB (99)
from zero to the valuec, for fracture and then decreases during

propagation, if the fracture path is self-similar and the fractur@nd

toughness is constant. Under these conditions, the maximum value of
of curvaturex* is a constant an@* = x, along a newly created D= —. (9b)
part of beamdL due to fracture. The relationship between the B
external force and the fracture toughness from @gis In this case, Eq(7a) with k*<p givesD<1, thereforef< /2.
Ejlo 1 (b)2 For B<k*<(2—a)Bl(1-a) or pl2<f<p(2—a)?2(1
f—HJFEDB. (6a) —a)2

If «*>p, the strip enters elastoplastic deformation before un-
for j strips,n, tearing fracture surfaces and-n, peeling fracture loading starts. Substituting Eq&b) and (7b) into Eg. (6a) with
surfaces, where Ep=dA+dI’, we have

760 / Vol. 68, SEPTEMBER 2001 Transactions of the ASME



B 1 K*2 BZ
f—E(lfa) 7+2K—**3ﬁ
* 2
+§ Kﬁ —2(1-a) A —+3(1—a)
B K*Z
=25 (10a)
where«*/3 is given by Eqs(8), and
B 2f B
faE—Z(l—a)\lE+3(l—a). (100)
Equation(9a) with «*<(2—a)B/(1—a) gives
(2-a)’B
t=sq—o2 o) (10c)

(0) For k*>(2—a)Bl(1—a) or f>B(2— a)?/2(1— o).
Equations(5c), (6a), and(7b) give

* 2 *
f— g{eKB—Z-HS(l—a)Z(Z—a) %—3(1—&)(2—04)2

+(2- a)sii] (11a)
K
and
D=au’+3(1-a)—2(1—a)u?, (11b)
where
1 2f \/ 2f\? 2f -
U*l_2 12+F+ E +24E—48, for a=0
(11c)
1 2\/1 2—a)? e 2t 1 2(2
u=g (1-a)(2-a) +§Ecosw—( —a)(2-a)(,
for 0<a<1 (11d)
T 1
"33
2f
(2—a)3[1+(1—a)3]+(1—a)2(2—a)eE
Xarcco
\/ L N2 e 2f]3
(1-a)(2—a) +§E
(11e)
e=ata(l-a)(2-a)=1-(1-a)® (11f)

and «*/8 is given by Eq.(8).

4 Calculation and Discussion

u
During the self-similar tearing and peeling of thin sheet, the

rotation angle at the tip of strip®, , may reach and subsequently

remain at the force loading angie shown in Fig. 1b), if speci-

toughness. The stiffer the beam, the longer the length needed to
achieve the steady-state process; and, the smaller the value of
fracture toughness, the longer the length required to achieve a
steady state. The relationship between the beam length for steady
state and the fracture toughness is plotted in Fig) for elastic
materials(a=1). Similar calculations were performed on beams
made of bilinear elastic materials, i.e<1 (as for a plastic ma-
terial, but where the unloading path reverses down the loading
path towards the origir=0 at ¢=0). It shows that the relation-
ship is almost the same as that shown in Fig. 4, exceptfod
with a sharp drop arounb = 3.

Even with the external force increasingploadingmay occur
in a cross section of beam at large deflections due to the shorten-
ing moment arm([7]). For elastoplastic material, the required
length for steady-state fracture is less since the curvature in the
plastic unloading region is larger than that of bilinear elastic ma-
terials. Equation3c) with «* =constant shows that the moment
rate gm/gs is the same as that of elastic beams along the beam
length created by fracture,<0S<L —L,. When the steady-state
fracture, which originates witld= 6,= ¢ at the beam tip, propa-
gates tof=¢ at S=L—L,, a beam length relationship between
elastic beams and elastoplastic beams is obtained. The derivation
is given in the Appendix and plotted in Fig(b. It shows that the
required beam length decreases with decrease. &for an esti-
mated(or known fracture valueD with load force anglep= /2,
we can obtain the required elastic beam length for steady-state
fracture from Fig. 4a) and the relationship between elastic and
elastoplastic beam length, (—Lo)/(Le—Lo) from Fig. 4b) with
a given value ofa. Therefore, the required length of a test speci-
men made of elastoplastic material can be estimated from the
combination of Fig. 4a) and Fig. 4b), especially when the origi-
nal length of beantthe length before the fracture starts to propa-
gate, Lo, is relatively small.

The relationship between the fracture toughness and the exter-
nal force is given in equation®b), (10b), and(11b), or

2f 2f

DZE' for Esl, or a=1 (12a2)
[B )t 2f (2—a)?
D= a—*2(1 ) +31 a) for 1<,3 ( )
(120)
and
2f (2—a)?
a2 N _ -1 = —
D=au"+3(l—a)—2(1—a)u -, for B>(1—a)
(12c)
where
= 12+2f+\/2f)2+242f—48 f =0
u= 7 3 3 3 , for a=
(12d)

= %[2\/(1—a Y(2—a)?+ —%Cosw—(l—a)z(Z—a)},

mens are longer enough. In this case, tearing and peeling becomes . 1

a steady-state process with constant external force. Under the
conditions when the beam increases froro L +dL due to frac-
ture propagation, the unloading work along the whole beam is

equal to that of rebending the newly created lendth from

k=k* to k=0. Therefore, instead of calculating the deformation
along the whole beam with a great deal of complexity, the incre-
mental work in each strip can be obtained merely from the bend-

ing and rebending back of the newly created beam ledgth

The beam length corresponding &= ¢ will depend on the
material properties, beam cross-section size, and the fracture
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for O<a<1 (1%)
3 3
2f
(2= )] [1+(1—a)®]+(1- a)2(2—a)eg
Xarcco

\/ , e2f]?
2 (1-a)(2—a) +§E
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Fig. 4 (a) The required length for steady-state tearing and  /or peeling specimens made of elas-
tic materials (for loading angle ¢=/2), (b) relationship between elastic and elastoplastic beam
length required for steady state tearing and  /or peeling

and D—3 when the curvature tends to infinity, or when the bending
_ 3 moment tends to the value for plastic collapse, .8/,
e=1-(1-a)" 129 =BH?g,/4. Therefore, wheiD is about 3 in magnitude, a small
It is clear that the relationship is only related to the materiahcrease in fracture toughness produces a big change of curvature
properties E,a,0,) and dimensions of stripgvidth B and depth and the external force increases shafjlycannot be larger than 3
H). During experimental tests, these parameters are usudlly a perfectly plastic material We employ Fig. 5 to find the
known. Therefore, the fracture toughness follows directly fromalue of fracture toughness, from the known external force in
experimental values of external force and can be easily obtainexperiments on known materials of given strip dimensions.
from Egs. (12). The variation of the nondimensional fracture Trouser tear tests shown in Fig(a} are often employed to
toughnessD (given by Eq. €c)), with the nondimensional exter- obtain the tearing fracture toughneRs. If the strip deformation
nal force, Z/8=2FEI/MZ, is plotted in Fig. 5 for different val- is in the elastic rangéa=1), Eq. (128) with j=2,n=n,=1 and
ues of a. It shows that greater fracture toughneBs, requires D=3ERJBo§ gives the well-known relation
increased external force. Figure 5 also shows that with lowered
ratio « of plastic modulus to elastic Young’s modulus in the trou- R.=

ser materials, the load increases for the same toughnesa=Fr (13
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Fig. 5 Variation of the mixed nondimensional fracture toughness with the nondimensional
external force, 2 fB=2FEI/M?

since
2f  6FE _D_3ERt -
5 BHZ DT BT (1)

The above equations are only valid whBe- 3ERt/Ba§. Unfor-
tunately, whenB is large, twist of the legs may affect the test
results. 800 |

For elastoplastic strip deformation at smaller valueBpthe
R;—F relationship can be obtained from Ed42b)—(12f) with
D=3ER /B’ and 2/#=6FE/BHo. Figure 6 shows the com-
parison between the theoretical results obtained from Ed3.
(solid lines and experimental result$3,4]). These tearing tests
were steady state. The theoretical results from E4@). fit well
with experimental results when the fracture toughness was chosen
as R,=44kJ/Int for steel (a=0.00234 and 8=0.45; R,
=52 kJ/nt for aluminum (¢=0.00551 and3=0.37714; and R,
=120 kJ/n? for brass(a=0.12025 and3=0.31634. Instead of
very complicated and lengthy computing calculations for the data
of Fig. 9 in Liu et al.[2] only a few minutes of computing time 400 +
were used to obtain the data in Fig. 6.

The method of plotting force/thickness versus width of strip
employ in Fig. 6 had been used by, for example, by Mai and
Cotterell[3] and Atkins and Ma[1] to obtain the fracture tough-
ness using a simple analysis for tearing which predictedRiit
increases linearly with the increase of strip widhHowever, as 200
shown in Fig. 6, experimental data over much wider rangeB of
than used by these authors show tRAH is not a linear function
of B, nor does it always increase with increaséBof-urthermore,
even when the nonlinear shape FefH versusB plots shown in
Fig. 6 had been correctly treated by Liu et ] the values of

Ry =44kJ/m?

Ry =52kJ/m2

Fo/H (N/mm2)
g

Ry =120kJ/m?2

fracture toughness had to be obtained by fitting the experimental 0 N

data to the algebra by a trial and error method to find the tough- 0 10 20 30 40 50
ness which gave a best fit. It is clear from the present analysis that

the fracture toughness can be found directly from E@8), or B (mm)

from employing some master graphs similar to Fig. 5, using only

the force obtained from experimente_ll results. Fig. 6 Variation of the external force  F,,/H with the beam
It should be emphasized thiathere is thesteady-statéorce for  yigth 8. —— Egs. (9), (10), and (11); +: experimental result

tearing and/or peeling. Using the external force atitfiigation of  of steel from [2]; O: 5251 aluminum alloy ([2]) and @: brass
fracture in Eqs(12a) and(13a) will overestimatéhe tearing frac- ([3]).
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Fig. 7 Variation of nondimensional external force f with nondimensional dis-

placement at the tip of beam y, for elastic tearing and /or peeling. ¢=m=/2; @: ini-
tiation point of fracture.

ture toughness in elastic fracture, if the rotation angle at the tip sfiows that the moment rate along the beam is the same as that in
the leg, 6, , is less than the force loading angig, (i.e., the origi- elastic beams. The moment given from the equilibrium condition
nal length of the stripL,, is not long enough or the fractureis ([7])
toughness is too smalht the beginning of fracture propagation.

Figure 7 shows that after initiation in elastic fracture, the force m=f cos¢(x,—x) —f sing(y,—y), (A22)
will decrease to the constafdgteady-statevalue during propaga- or
tion. For elastoplastic materials it is not possible to say whether
the use of the initiation force will overestimate or underestimate Jam .
—=—"fsin(¢—0). (A2b)

the true fracture toughness: as shown in Figs. 6 of Liu ef23l. Js
relating to elastoplastic propagation, before the external force .
reaches the steady-state value, it may continuously decrease fB¢ curvature, can be obtained from EqsAl) and (A2b),
small values oD; decrease then increase for intermediate valud¢ich is
of D; or continuously increase for bip. do
k= ——=k*2+2f B[cos¢p—cog ¢— 0)]. (A3a)

5 Conclusions ds

Self-similar tearing and/or peeling of thin sheetsithout Therefore, the length from the fracture fragis
change of strip cross sectipaccurs in steady state with constant )
external force when the “legs” of the testpieces are long enough. s:f de
In this case, the incremental elastic and plastic energy in the de- o Vk*2+2fB[cosp—cog p—0)]’
formed strip is equal to that of the newly created lengthwith ) ) o
curvature change from zero to a maximum vakfieand returning Where ¢ is the loading angle of the external force shown in Fig.
to zero. The relationship between the external force and fractu@), «* is the curvature at the fracture front artl= «} is given
toughness depends only on the material prope(tie€, anda,) by Eq. (7a) for elastic material, ok* = Ky, is given by Eq.(7b)
and cross sectiofB and H). For a given value of the external for elastoplastic material.
force, the fracture toughness can be obtained from B3, or When §=¢ and x=0 atS=L—L,, Eq. (A3a) and (A3b) give
from a master graph like Fig. 5 in this paper. Since, in elastic
tearing and peeling, the initiation load is greater than the steady-
state load, true toughness is overestimated if the load at first
cracking is used. In elastoplastic tearing and/or peeling, the
steady-state load may be smaller or greater than the initiatiBH
load, depending on the value of the nondimensional fracture L-L s de

it i i in thi 0

toughnes®. In consequence, it is not possible to say in this case  ,.* = )
whether the toughness will be less or greater than that obtained Lo 0 V1+[cos¢p—cog ¢d— 6)]/(1—cose)
using the initiation load in place of the steady-state load. (A4)

(A3b)

K*2

2tp= (1—cos¢)

Appendix Equation (A4) is valid for both elastic beams and elastoplastic
beams with«k=(1—a)x* —(2—a)B in the newly created beam
For elastoplastic materials, E(Bc) with <*=constant gives  length due to fracture € S<L —L,. For the same force loading
Jm 1ok 1d2 angle, the right-hand side of EqA4) is constant. Therefore, we

— == have

s PBds PBds (AL) )
in the newly created beam length due to fractures®B<L—L, Lo~ Lo = K_‘; (A5)
shown in Fig. 1a), when «=(1—a)«* —(2—a)B. Equation(12a) Le=Lo xp
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1 Introduction used to eliminate the existence of these solutions. By following
Motivated in part by applications in turbomachinery and hel't-he earlier work of O'Reilly and Tur_cottEB], the st_eady motions

- e calculate can be used to determine the equations governing the
copter rotors, there have been numerous studies of the dynarrg ll-amplitude vibrations of the rotating rod.

of rotating rods(cf. Antman[1], Leissa[2], Rao[3], and refer- ™ rpo o4 theory on which we base our model was developed in
ences therein A major portion of this work is concerned with the 5 series of works by A. E. Green and P. M. Naghdi and several of

vibrational response of an elastic rod which is being whirled abojair co-workers dating to 196@cf. [9-11] and references

a fixed axis(cf. Fig. 1. The vibrations of interest are usuallyerein. It is a Cosserat rod theory which includes, as particular
considered to be small amplitude disturbances which are superiggnstrained cases, most existing rod theories. Green and Naghdi's
posed on the steady deformation of the rod induced by the rolgy theory has been used to examine various problems where the

tion. In general, the partial differential equations governing thepisson effect is important. These include contact problems
vibrations are nonhomogeneous and depend on the steady motjptp 13) and wave propagation and vibratioii4,15).

These equations have been used to show the variation of the flexan outline of this paper is as follows. First, a brief discussion of
ural frequencies as the rotational speed incre@esVright et al.  the rod theory is contained in Section 2. Then, in Section 3, the
[4] and references therginSimilar models have also been pro-model for the whirling rod is presented. Most of the developments
posed to analyze this issue in ever broadening types of rods andection 3 follow{8]. In Section 4, the boundary value problem
boundary conditions. governing the steady motions is discussed. Next, in Section 5, the
If one considers the system shown in Fig. 1 and supposes tBatady motions predicted by the model are presented. Because the
the rod is composed of an isotropic elastic material, then it is ealsyundary value problem involves a stiff set of ordinary differen-
to visualize that as the rod rotates, its length will increase. Fuial equations, finding solutions numerically proved to be a deli-
thermore, this increase in length will, because of the Poisson e&te matter. The numerical continuation algorithm for boundary
fect, be accompanied by a contraction of the cross section. Hovalue problems used by AUTO96] was employed. As dis-
ever, the model most frequently used in the literature to predict tbassed by Doeddl17], a numerical continuation method is par-
steady motion only considers the longitudinal displacement. Weularly suited to our needsWe discuss the uniaxial model in
shall refer to this model as the uniaxial model. If a linear uniaxiégection 6. There, we show how it can be obtained from the model
stress-strain constitutive relation is used to establish this modeiscussed in this paper, and how it relates to other models which
then Bhuta and Jong$§] and Brunellg[6] observed that above a have appeared in the literature. The closing section of this paper
certain critical speed of rotation, solutions to this model ceaseddiscusses future work.
exist. Hodges and Bled4d] later showed how this lack of exis-
tence could be eliminated using nonlinear constitutive relations?2  Preliminaries on the Model Development

In contrast to th_e vast majority of ex_isting works, in the present The whirling rod-like body is modeled in this paper as a mate-
paper we determine the steady motions of the rod by using,ig| cyrve and two directord, .2 That is, we are using a Cosserat
model _whlch accommodates_, the Poisson e_ffect. The resultlngr directed rod theory to model the body. As shown in Fig. 2, the
model is based on a geometrically exact elastic rod. The resultsigference state of the material curve is chosen to coincide with the
our work provide a more realistic solution to this problem. Fofine connecting the centers of area of each cross section of the
sufficiently large angular speeds, we also find physically unreg|ndeformed rod. The points on this line are identified by the arc-
istic solutions; however, their nature is not the same as thogfgth coordinate. In addition, the reference values of the direc-
found in the uniaxial model mentioned earlier. We also point ogrs, D, (&) andD,(&), are chosen to be unit orthonormal vectors
how certain modifications to the constitutive equations can Rghich span the cross section. In the deformed state of the rod at

time t, the position vector of a point of the material curve is

To whom correspondence should be addressed. defined by the position vectar=r(&,t) and the directors are

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  yector-valued functionsd,,=d,(&,t). Here, the coordinatg is
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, August——— ) ) o )
16, 2000; final revision, January 2, 2001. Associate Editor: N. C. Perkins. Discussion®An introduction to, and an overview of, continuation methods can be found in
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa@del[18].
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, °In this paper, lowercase Latin indices range in value from 1 to 3 while lowercase
and will be accepted until four months after final publication of the paper itself in th@reek indices range from 1 to 2. These indices are summed when repeated. The set
ASME JOURNAL OF APPLIED MECHANICS. of vectors{E;} denotes a fixed right-handed Cartesian basis.
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Rotor E, 3 The Rod and Its Motions

C I In this paper, the reference state of the rod-like body is a pris-
matic, homogeneous parallelepiped whose cross sections are of
! height h and widthw, and whose length i& (cf. Fig. 2. The
L, — \ steady motions of interest here are such that the deformed state of
E, ‘ ’ this body, when viewed by an observer corotating with an angular

velocity QO E,, appears to be in a state of equilibrium. The cross
sections and centerline of the steadily rotating body will be de-

Rod-like formed. Specifically, the motion of the rod modeling the body is
body assumed to be of the form
Fig. 1 A rod-like body rotating with an angular speed Q about r=xPD;, d;=d,PD;, d,=d,PD,, 4

the E;-axis. The angle @ of rotation is such that 6=Q. .
where x=x(¢), d,=d,(¢), D;=E;, and the rotation tensd?

corresponds to a rotation about tBg-axis (cf. Fig. 1) with a
constant(counterclockwisg speed().” It is straightforward to

used as a convected coordinate for the present configuration.snPW that, for the motior),

contrast to other rod theories, both the magnitude and direction of . 2 o . 2
the directors are free to change. F=—Q%PE;, d1=0, dp=-0%d;PE;. (5)

To determine the equations governingndd, , it is necessary ppysically, the motior(4) is such that material planes which are
to postulate balance laws and constitutive relations. These canfygn | 1o the centerline in the reference configuration of the body,
found in Naghdi[10]. We recall, from his review article, that the e main normal in the present configuration. However, the width
nontrivial balance laws for an elastic rod are the balance of linegg height of these sections will have changeavth, andhd,,
momentum and two balances of director momentum: respectively. To examine whether the moti@dh can be sustained

N’ + M=AF+AyAd in a particular rotati_ng rod depends intimately on the refe_rence
B geometry and material of the rod, and the applied forces acting on
1) the rod. We now turn to specifying these quantities.
For the body of interest, we find, using the prescriptions dis-
In these equations, the superposed dot is used to denote the pagtiabed in Green and NagHdil], that
derivative with respect ta, while the prime denotes the partial
derivative with respect t@. Furthermoren is the contact force,
m® are the contact director forcek; are the intrinsic director
forces,f is the assigned force per unit mass, dficare the as- o 12 o1
signed director forces per unit mass. The constant inertia parafflile y*, y°, andy“=y~"are zero. Here, the constant mass den-
eters are the mass per unit undeformed lengtiand the inertias, Sity per unit volume of the rod-like body is,. While the rod is
y® andy*#=yAe_All of the aforementioned fields can be p|ace(yvh|rllng, we assume that external body fordssich as gravity
in approximate correspondence with the fields of thre@nd tractions on its lateral surface are absent. Consequéntly,
dimensional continuum mechanics. We shall shortly use these cart'=1°=0. ,
respondences to prescribe the inertia parameters_ Pe-rtalnlng tO the materlal of the I’Od, we Sha” i_:'lssum(_e that the

To close Eq(1), it is necessary to specify constitutive relation$0d-like body is composed of a homogeneous isotropic elastic
for the force fields. Here, we assume that the rod is elastic withaterial. Following Green, Laws, and NagHdi9], the strain-
strain-energy per unit lengthy. This energy is assumed to be a€nergy function of the rod is assumed to be a quadratic function of

m® + e —ko=\y“F+ y*Fd,.

3 3
1_ poh w )\y22= poW h

)\=p0hW, )\y 12 ’ 12 ’ (6)

function of the following 12 independent strains: the strainsh ¢y=\ ¢ . The functiony, is given by
¥ij=di-dj—D;-D;, K, =d,-di—D,-D;, (2) 2\ =Ki¥irt Kot K Vit Koviayaet Kevivast Kev2ovas
whered;=r’. That is,\ cp:)\fp( Vi 1Kqk)- The resulting constitu- Ky
tive relations can be written in the form + 7 (vt 720+ Ks Y35t Ke¥iat Kaondit Kiaed
n=X 44 K¥=) % me=\ % 3) +KaorTp+ K3yt Kiakaonort Kaskgst Kagrds
ar'’’ ad,’ d ;y

o o *Ki7K11K2; - )
Specifying\, y¢, y*, ¢, f, andl®, and substituting3) into (1), a ) ) o
set of nine scalar partial differential equations for the nine scal@gsuming that the strains are infinitesimal, the constants
fieldsr andd,, are obtained. Ky, ... kq7 for various rods were determined in a series of works

by comparing exact solutions of the rod theory to corresponding

solutions from three-dimensional linear elasticityhe resulting

values of the constants are functions of Poisson’s rgtidoung’s

modulusE, and the geometric properties of the undeformed three-

dimensional rod-like body that the rod theory is modeling. How-

point & =0 ever, in contrast to these works, here the strains will be assumed
L Ih finite. For future reference, we recall that Green and Naghtli

!

Centerline
material E; A D,

established that

/// ,Ej———;)z— -‘“/% EWh(l_V)

E, ki=ky=kg=—r— " —
Centerline 4(1+v)(1-2v)
material
point§ =L “In  particular, PE;=E;, PE,=cos@)E,+sin(¢)E;, and PEs=cos@)E;
—sin(O)E,.
Fig. 2 The reference configuration of the rod-like body 5This series of works was summarized and critiqued by O’RER.
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L

. Eh®w . Ehw?
07 241+v) "N 24(1+v)’
The values of the remaining eight constants are not of interest

here. ]
00 J&=—7-_
With the assistance d#), (7), and(8), we find from(3) that 0.0 s 1.0

@)
k17: 0. (8) u(s) e i)

(i)
®

14
n=2k3(x’x’—1+ E(ylﬁ yzz))x’PEe,,

k1: 2k3

14

14
Yt 1 (Y22t 733)) d;E;+Kyorq1d1Ey,

14
k?=2k3| y2o+ E(711+ 733)) daPE;+Kyykp505PE,,

m*=Kk;ore1;d; Ey,
m2: k11K22d2PE2 . (9)

It is important to note that these expressions are only valid for the
steady motions that we are considering.

4 The Boundary Value Problem

For the rod of interest, the eng=0 is assumed to be fixed
while the endé=L is assumed to be free of tractions. In the
model, the hub radius is assumed to be zero. For this caserig. 3 The dimensionless axial displacement  u(s) and lateral
substituting(5), (6), and(9) into (1), we find that six of the nine strains y,,(s) and y,,(s) for various values of w: (i), ®2=0.5;
equations are identically satisfied. The three remaining equatiqny, w2=1.0; (i), w?2=1.5; (iv), 0?=2.0, and (v), w?=2.64. For
simplify to three scalar ordinary differential equations #d) these results, »=0.3 and a rod whose length is ten times its
andd,(¢). height and width was considered: ~ h/L=w/L=0.1.

Omitting details, the three equations can be expressed in a com-
pact dimensionless form:

P R S

v [dyn  dyg)(du dln::dlzz::
ds2 u 2 v ' In summary, determination of the steady motions has been re-
3 as +1| -1+ 1T<711+ YV22) duced to finding solutions(s), y11(S), andy,,(s) of (10) which,
v for a given(), satisfy the boundary conditiori¢3) and (14).
d?yy, 24 (L2 When y,,=—1,d;=0 and the height of the rod-like body has
4L " 1-2, (?) (=) y11+ v(yot v39), shrunk to zero. Below this value of;;, a real-valuedi; does not
exist. Related remarks apply tg,,. For the axial displacement,
d?y,, 24 (L2 1-v) v_vhendu/d_s= -1 for an interval ofs, the cent_e_rline of the rod-
a2 " 1-2, (W>((l—v) Yoot v(y11t+ y33))—4(m)w ,  like body in this interval has shrunk from a finite length to zero.
(10) Consequently, the following restrictions are used to distinguish
physically realistic solutions:
where
du
) ) du 2 > — 1, v>—1, E>_1- (15)
yu=di=1, yp=dp—1 ye=| g5+l -1 (A1)
For the steady motions of interest in this paper, the first two cri-
In (10), the following dimensionless quantities were used: teria will be violated wherw is sufficiently large.
£ x—¢ \/LZPO(l_ZV)(1+V) 5 The Steady Motions
s=p U= @ Q E(1—») . (12) y

We now turn to examining the steady motions predicted by the
Here,Lu represents the axial displacement of the centerline of theodel discussed previously. Our results were obtained using

rod. AUTO97 and its continuation algorithm. To use this algorithm, it
Supplementing10) are two sets of boundary conditions. Folis necessary to have a solution to the boundary value problem.
the fixed end, Fortunately, whenro=0, the trivial solution exists:
u(s=0)=0, y12(s=0)=0, y2s=0)=0. (13) u(s)=0, y11(s)=y22As)=0. (16)
At the free endn=m®*=0. With the assistance of (9)s, we This solution allows us to use as the bifurcation parameter for
find that these conditions imply that the continuation method. In essence, we are using construct a
homotopy.

For the case of a square rod, solutions to the boundary value

14
YadS= D+ 7 (yu(s= 1)+ 72(s=1))=0, problem are presented in Fig. 3 for various valueswofOne
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Fig. 4 The_dim(znsionlesus Iatezral strain 7’222(5) for yarioug val-  Fig. 5 The dimensionless axial displacement  u(s) predicted
ues of w: (i), ®*=0.5; (i), @*=1.0; (i), @*=1.5; (iv), @*=2.0, by the uniaxial model (18) for various values of : (i), ®?
and (v), @?>=2.64. For these results, »=0.3 and a rectangular =0.5; (i), ©2=1.0; (iii), ©2=2.5; (iv), ©>=5.0; (v) 02=10.0; and
cross section was considered:  h/L=0.1 and w/L=0.05. (vi), ©2=15.0.

immediately notices from this figure that severe lateral strains

(¥11, Y22, K11, andkyy) are encountered close to the fixed endained from the one discussed in Section 4, by setfing 2y,

We shall refer to this region as the boundary layer. Its appearanggy their derivatives equal to zero, and ignoring Eqgs. £30)

in our numerical works is a consequence (&@0) being a stiff The uniaxial models discussed in this section can also be consid-
system of differential equations. We note in particular thawas ered as special cases of whirling elastic strings. For details on the
approaches a critical value.; the width of the cross sections extensive body of work in this area the reader is referred to Ant-

near s=0.05 tends to zero. Fop=0.3, we found thatwei man[1].

~\2.64. Whenw is greater thamu;, the solution of the bound-  Using either of the aforementioned approaches, the nontrivial

ary value problem is phy5|cally meaningless. It is also EVideréquation governing the axial disp|acemeﬂtis

from Fig. 3, that the lateral deformationi®t a negligible effect.

The representative case @§,(s) for a rectangular rod whose @: _ 20°(u+s) (18)
height is twice its width is shown in Fig. 4. The behavior of ds? 2
v11(s) and u(s) for this rod are qualitatively similar to those 3 &Jrl -1

shown in Fig. 3 and are not presented here. For this rod, we note
that the lateral strairy,, is larger than in the square case. Indeedyhich is solved subject to the boundary conditions, frd/8) and
the steady motion predicted by the model wheh=2.64 is not a (14,

physically valid solution. Related remarks apply to a rectangular du

rod whose height is half its width. Indeed, the numerical results u(s=0)=0, —(s=1)=0. (19)
for y14(s) for this case are qualitatively similar to those presented ds

for y,y(s) in Fig. 4. In general, reducing andw while keepingL | (18),

constant has the effect of increasing the extreme values of the

lateral strains and reducing the size of the boundary layer. L2pg
There are two consequences to our choice of strain-en@jgy 0=0\/— (20)
First, as shown numerically, it implies that the boundary value E

problem will have a unique solution for each value @f This

tained quartic terms in the strains. The second consequence of pfic shecification ensures that the short wavelength limit of wave
constitutive selection is that it does not inhibit necking in th

boundary layer. To see an instance of this effect, we subsit tropogation coincides with the classical three-dimensional result
Y11= Y20o= — 1 into (9) and note that this deformatidwhere the F Chree [25]. Other authors identifyE =E(1-»)/((1+»)(1

cross sections of the rod are deformed to have zero asabe —2v)) (cf. Cremer et al_{26]). It is important to note that thg
achieved with finite forces. Clearly, this is unacceptable. To eIimmggg: represented ti8) is a geometrically exact linearly elastic
nate this behavior, one could add terms\t@; to penalize such )

deformations. These terms would have the functional forms The ordinary differential Eq(18) is integrable by quadrature.

To see this, we use the obvious coordinate transformatian

W(z)=ulog(1+2)*%, (17) =u+s which renderg18) autonomous. Furthermore, an integral
where is constant and denotes any of the straing; and « . of motion| of the resulting equation is
BecausedW¥/dz(z=0)=0, the addition of these terms does not 3/1dx\* 1/1dx)|? -
entail a lengthy re-evaluation &, . . . k;;. However, they com- = Z(E d_s) il d_s) + @ X°. (21)
plicate the ordinary differential equations for the model _ .
signiﬁcanuy? Because the level sets bfor strictly positivex anddx/ds do not

intersect, the solution to the boundary value problem for a specific

6 The Uniaxial Model w is unique. Usingd ,u(s) can be obtained from a quadrature. We

A tioned iouslv. th ¢ | d del remark that the resulting expression fos) would be useful in
" ?’tme? |on3 prew?us Ys 'de Thos chmmon%/f ”fe_l_ m'I(IJ et taining the equations governing the vibrations of the rod.
€ literature does not consider the Foisson eflect. 10 1lustrale), riq "5 - representative solutions for various valueswobf

how this uniaxial model relates to our developments, we now tu 18) which satisfy(19) are shown. Based on our numerical inves-
to presenting such a model. The first model we present is nonlif

d it is th ialized 1o the classical I del. Th jations, we conjecture that solutions to this model exist for all
ear and 1L IS theén specialized 1o he classical linear moaet. ues ofw. In interpreting the results of Fig. 5, it is interesting to

are several methods for establishing the nonlinear model. The fi o
method, which is discussed in the Appendix, models the rod-likl@tte that for a rod-like body composed of steel, whée

body using a string theory. Alternatively, the model can be ob—— _ o )
More precisely, we are now considering a constrained rod theory where the

- directors are constrained to be constant vectors. In such a theory, the balance laws
5The interested reader is referred to Antnidhand Antman and Carborj@1] for (1), are identically satisfied by constraint responses. For details on the procedure
additional discussions on necking and growth conditions in nonlinearly elastic rodsed to obtain these responses the reader is referred to O’'Reilly and T{ig&}ite
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0.1 placement predicted by10) and (18). Clearly, the model of

' Section 3 predicts a larger overall extension of the rod-like body
compared to the uniaxial model. This difference increases from
zero as Poisson’s ratiwincreases from zero to 0.5. In conclusion,

e 1 the appropriateness of using uniaxial models to predfs) di-
minishes aw increases because the lateral deformations increas-
ingly influence this displacement.

R _— The model presented in Section 3 can also be modified to con-
0.0 s 1.0 sider the effects of an added tip mass and rotor hub radius. In

addition, it can be applied to the oft-studied problem of a rod
clamped to a rotating ringcf. Antman[1], Lakin and Nachman
[27], and references therginThis problem is of particular interest
because of the presence of buckling instabilities. To determine the
vibrational equations for the steady motions of these problems, the
procedure discussed in O'Reilly and Turcof&] could be fol-
lowed. However, as we were unable to analytically integ¢a@,
=200 GPa angh,= 7850 kg/n¥, 2 ~48200(/L) RPM (whereL  and the analytically tractablél8) does not generally provide a

is in meterg. Consequently, some of the solutions presented pgfeod approximation ta(s), any work on the vibrational response

tain to large rotational speeds. ) _ . _of the whirling rod will have to be performed using numerical
To linearize the uniaxial model, the following approximation isnethods.

used: Bdu/ds. As a result,(18) simplifies to

d2
d_sl; =—w?(u+s). (22) Acknowledgments
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Sin(ws) 23)

—s.
 COY w) Appendix
In contrast to(18), they also noted that whem— /2, u(1)
—oo, However, it is also knowiisee[7]) that the approximation
used to establisk23) becomes invalid long before = /2.

For completeness, we note that Hodges and BJ&§sin an
attempt to correct the deficiencies in the linearized uniaxial mod
proposed generalizations ¢22). Their two generalizations are
equivalent to assuming the following strain-energy functions:

Fig. 6 The dimensionless displacement  Au(s) for various val-
ues of w: (i), @?>=0.5; (i), ®®>=1.0; (i), w?>=1.5; (iv), w?>=2.0,
and (v), @®>=2.64. For these results, »=0.3 and a square cross
section was considered: h/L=w/L=0.1.

u(s)=

The Uniaxial Model and a String Theory. As mentioned in
Section 6, the uniaxial model can be established using a string
theory. This theory is used to provide a one-dimensional model for
a rod-like body, where the motion of the centerline is of sole
importance. Models for the deformation of elastic bars and cables
which are used in the literature are based on this th&ory.

In a string theory, the body is modeled as a material curve

Ewh 28 which is embedded in Euclidean three-space. The material points
)\z//S:T (Vyss—1—1)%+ ?(\/733— 1-1)3%], of this curve are identified using the convected coordigaféhis
coordinate is chosen to be the arc-length parameter of the curve in
Ewh a fixed reference configuration. The position vector of a point of
Nps=——(log?(\ya3—1)). (24) the material curve at timeis given by the vector-valued function
2 r(¢,t) wherer is measured from a fixed origin. The deformation
For certain parameter regimes, the models developed and apfthe curve is measured using the strain
!ngid irg[?] exhibit qualitatively similar results to those presented yag=r'-1'—1. (A1)
J This strain also provides the stret¢h + y35 of the curve.

7 Concluding Remarks . ;I'Ct;e(ltl))ca)ll form of the balance of linear momentum for the string
. 1

Comparingu(s) shown in Fig. 5 with the corresponding results . .
in Fig. 3, the qualitative similarity of the axial displacement pre- n’+Af=A\f, (A2)
dicted by(10) and the uniaxial modell8) is apparent. Itis clearly \heren is the contact forcd, is the assigned force per unit mass,
of interest to examine this issue in more detail. First, we Obser&ﬂd)\:)\(é‘) is the mass per unit undeformed |ength For an elas-

that when Poisson’s ratio=0, then the equations governing theijc string, one has the following constitutive relation fior(cf.
boundary value problem associated w(tl) decouple. In particu- (3),):

lar, the axial displacement predicted (i) and(18) are identical.

In addition, for the boundary value problem of interest, Egs. n_)\ﬂ_fﬁs A3
(10), 53 can be solved: T (A3)
v11(8)=0, where\ ¢ is the strain energy. This energy is assumed to be a
function of y33:
\/Z‘L - Y33
W (W2 cosh ——(1-s _ 2
vadS=—|7z|| 1- . (25) n=2r (A4)
6 L V24L
cosh ——— The local form of the balance of angular momentum for the string

. . is identically satisfied by this constitutive relation.
For nonzero values of, it was not possible to perform an ana-
lytical comparison and, as shown in Fig. 6, we resorted to NUMEri-soyr developments here are specializations of the theory discussed in O'Reilly
cal methods. In this figuré\u is the difference between the dis-and Varadi28]. Their work was based on the rod theory of Green and Naghdi.
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e-mail: $.J.Antony@leeds.ac. uk In this paper, we analyze the nature of stress distribution experienced by large particles in

M. Ghadiri a dense _granular media subjet_:ted to slow_ shea_ring, using_ the dis_tin(_:t elem_ent method.

. The particles were generated in a three-dimensional cuboidal periodic cell in which a
large solid spherical particle was submerged (“submerged particle”) at the center of a
bed of monodispersed spherical particles. The granular systems with different size ratio
(i.e., the ratio of the diameter of submerged particle to that of the surrounding monodis-
persed particles) were subjected to quasi-static shearing under constant mean stress
condition. The evolution of stress distribution in the submerged particle during shearing
was carefully tracked down and presented here. The nature of stress distribution is bifur-
cated into two components, viz., (i) hydrostatic and (ii) deviatoric components. It has been
shown that, for size ratio greater than c.a. 10, the nature of stress distribution in the
submerged particle is hydrostatically dominant (increases the ‘fluidity’). For smaller size
ratios, the nature of stress distribution in the submerged particle is dominantly deviatoric.
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1 Introduction two-dimensional molecular dynamics simulatigmsth elastic in-
In recent years, granular materials have received an increasteracno.ns. between grainso stgdy the crushing mechanlsm O.f
attention due to their technologically challenging behavior in di 8lins inside a granl_JIar material l_Jnder oedometric COMPression.
o - L . hey have also carried out experiments on the two-dimensional
verse appllcatlops in fields such.as civil, mechanical, anq proc king of moulding plaster disks under oedometric compression
engineering. This has t_aeen facilitated great_ly _by the rapid 9rowlidd the video-captured images of their experiments is presented in
of computer power, which has enabled an insight to be gained@h 1 They observed the geometric evolution of interparticle con-
the complex and often mysterious behavior of granular materigls (s inside the packing during the crushing process. The experi-
by numerical simulations. In this paper, we report on the results gfental and numerical observations have shown a saturation re-
our |nve§t|gat|0ns on the size effects pf particles in granular sygime. where large grains, surrounded by smaller grains experience
tem subjected to slow shear deformation. The phenomenon ungigjs deviatoric stress and more hydrostatic stress. Despite an in-
study is relevant to dispersion, milling, grinding, and other indugrease of external pressure, the large grain fracture was impossible
trial processes. The vibration induced size segregation problegacause of this hydrostatic pressuyfdg. 1(b)). However, they
also known as “brazil-nut effect” has been the subject of severglve not quantified at what size scale the hydrostatic effect of the
investigations[1]). When a container having larger particles emgrains would become dominant.
bedded in smaller granular particles is vibrated, for example ver-Gundepudi et al[6] have investigated analytically the state of
tically, the bigger particles tend to move toward the top of thehree-dimensional stresses in a single sphere for some selected
container. Conflicting reasons have been attached to this phen@ases of loading conditions. They have observed that as the num-
ena([2]). Nevertheless, two-dimensional studies have indicatégr of contact points increases, the maximum tensile stress in the
that([3]) there exists a threshold size ratdiameter ratio of large sphere, in general, decreases and the state of stress inside the
particle to the surrounding mono-dispersed partideove which, sphere approaches hydrostatic compression. Based on this, they
the movement of larger particle increases. For smaller size ratiarried out some tests on glass and alumina spheres and correlated
(less than about thrgeno ascent of the large particlentrudep the observations with an analytical study. Recently McDowell and
was observed; for size ratio 5.3, the intruder undergoes an intBelton [7] have studied the micromechanical behavior of crush-
mittent ascent; and for size ratio greater than c.a. 10, the intrugdale granular soils and have presented interesting arguments on
ascends continuously and hence the fluidityovement of the the breakage process. At first, it may be anticipated that the larger
large particles becomes higher. However, we have not quite usarticles are most likely to fracture. However, the smaller particles
derstood about how does an increase in particle size mysterioudfg likely to have fewest contacts and there are two opposing
favors such an easy movement. effects on the particle survival; size and coordination number. If
Recent studies on the size effects in compacted beds basedhgheffect of the coordination number dominates over that of the
experiments and micromechanical modeling have shown intere@rticle size in the evolution of stresses in the aggregate, then the
ing characteristics. Bonnenfant et ] have studied the effect of Smallest particles would always fracture, although they have not
presence of hard inclusior(glass in a polymethylmethacrylate explicitly a}ttrlbuted this effect to the hydrostatic nature of the
(PMMA) matrix on compaction in a triaxial cell. Their experi-larger particles. ) )
mental and analytical studies have shown no influence of largeFrom the literature presented above, we can identify that the
inclusions on the global stiffness for the size ratio of the inclusiotiZe effects in granular media have a significant contribution to the

equal to 2 as considered by them. Tsoungui efs3lhave adopted €Vvolution of stress distribution. As for as we are aware, a clear
description of the nature of three-dimensional evolution of stress

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF distribution in a .SIOW|.y sheared_ granylar medla Contamm.g one or
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OFAPPLIEDME-  MOTe larger particles is not ava”at?le n the literature. m this paper,
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 18,we analyze the nature of stress distribution for large size particles
2000; final revision, January 8, 2001. Associate Editor: D. Kouris. Discussion on thig granular media subjected to slow shearing using the discrete
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departmerﬁ ment method. The particles were generated in a periodic cell

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi . . . g . .
be accepted until four months after final publication of the paper itself in the ASMBAVING & System of particles in Wh_|Ch a large solid spherical par-
JOURNAL OF APPLIED MECHANICS. ticle is submerged'submerged particlej at the center of a bed of
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(b)

Fig. 1 (a) Enlargement of region of granular material showing the hydrostatic effect on a large
grain surrounded with small grains, (b) despite the increase of external pressure, the large
grain fracture becomes difficult because of this hydrostatic pressure ((E2))

monodispersed spherical particles. The granular systems with diénter of the periodic cell and was surrounded by 5000 randomly
ferent size ratidi.e., the ratio of the diameter of submerged pamgenerated mono-sized spherical particlEgy. 2) with diameter
ticle “ D" to that of the surrounding monodispersed particle8 ¥ 0.01 mm. All the particles were given the following properties:
were subjected to quasi-static shearing under constant mean stissmg’s modulusE =70 GPa(hard, Poisson’s ratiov=0.3, co-
condition. The hydrostatic and deviatoric stress states of the safficient of interparticle frictionu=0.3 or 0.01, and interface en-
merged particle have been evaluated during shearing. The critieadjy I'=0.6 J/n?. After the particles were initially generated, the
size ratio at which the nature of stress distribution in a submergegistem was isotropically compressed until a mean stggss
particle becomes hydrostatically dominant has been identified ard kPa was obtained using a servo-control algorithm of the fol-
presented below. lowing form ([13)):

2 Simulations €=e+g(Pyg—Po)- 1)

The simulations were carried out using discrete element methisdthe above equatiorg is the strain ratepy is the desired iso-
which was originally developed by Cundall and Strd8k The tropic stress ang, is the obtained isotropic stress at a particular
interactions between contiguous particles are modeled as a @tage. An initial strain rate of 10 s * was specified which was
namic process and the time evolution of the particles is advangebgressively modified according (@) using a value for the gain
using an explicit finite difference scheme. The interactions bparametexg) calculated from
tween the neighboring particles are modeled by algorithms based — (/D o 2
on theoretical contact mechanics provided by Thornton and Yin 9=(€/(Pa=Po))inia @
[9] and Thornton[10]. The time-step used in the simulation isThe Egs.(1) and (2) ensure that the strain rate decreases as the
based on the minimum particle size and the Rayleigh wave spesttess difference decreases and that the strain rate tends to zero as
([11]). For detailed information about the numerical methodologyhe calculated value of the isotropic stress approaches the desired
the readers could refer to Cundall and Stré8k The advantage value, thereby bringing the system to equilibrium. In order to get
of applying the discrete element method to granular materialsasstable system at the desired stress level, calculation cycles were
its ability to give more information about what happens inside theontinued until the solid fraction and coordination number had
system. For example, investigations based on discrete elemattdined constant values. This procedure was used to progressively
method simulations have provided insights into the evolution odise the isotropic stress to create a sample with an isotropic stress
normal contact force distribution in granular media under quadevel of 100 kPa. At the end of the isotropic compression, the
static shearind[12,13). This enhances our understanding of thenicrostructure of the samples was isotropic. At this stage, the
physics of the granular media. In the present situation, we wouwdlid fraction and mechanical coordination numtmrerage num-
first identify the contact forces acting on the submerged partidieer of load-bearing contagt®f the samples considered in this
during shearing. Having known the boundary forces, we wouktudy were 0.656 0.017 and 5.83 0.26, respectively. For shear-
address the total stress tensor of the submerged particle and latgr a strain rate of 10° s™* was employed in the simulations.
bifurcated into the hydrostatic and deviatoric components arthe samples were subjected to the axisymmetric compression test
analyzed. (o01>0,=03) ([12,13)). During shearing, the mean stregs

The simulations were carried out in a three-dimensional cubok (o, + o, + 073)/3 was maintained constant at 100 kPa using the
dal periodic cell. A large spherical particle was generated at tkervo-control algorithm.

3 Results and Discussion

As mentioned earlier, the contact forceB(9) acting on the
submerged particle and hence the stress tensor of the submerged
particle are first calculated. Then, the principal components of the
stress tensor for the submerged particle is calculated, followed by
the bifurcation of the stress tensor into two components V.,
hydrostatic ps) and (ii) deviatoric (rps) components. This pro-
cess is schematically presented in Fig. 3. The evolution of these
Fig. 2 Schematic diagram showing the sectional view passing stress components in the submerged particle during shearing is
through the center of the periodic cell with submerged particle presented here.
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Submerged particle subjected
to contact force F©

Hydrostatic stress
component Ps

G2s=035
Deviatoric stress
component Tps
Note: ‘s’ corresponds to the submerged particle
(TDs/ps) = ﬁ(GIS - Gss) / (GIS + O, + G;S)
Fig. 3 lllustrative diagram showing the state of stress and its bifurcation in the

submerged particle

Figures 4 and 5 show the variation of the hydrostatic and de-The most striking feature of the nature of stress distribution in
viatoric stress components, respectively, for the submerged pére submerged particle during shearing is presented in Fig. 6.
ticle during shearingdeviator strair- €;— €3). In these graphs, Figure 6 shows the variation of the ratio of deviatoric stress com-
the hydrostatic and deviatoric stress components have been mpmrent to the hydrostatic stress component of submerged particle
malized to that of the entire granular systémand p, respec- during shearing. It shall be noted that, as the size ratio of the
tively). From these figures it can be observed that, as the size ratidmerged particle increases, the valuesrgf/ps decreases,
increases, the components of both the hydrostatic and deviatdhiereby, showing a growing dominance of the hydrostatic compo-
contribution to the submerged particle increases. In these figureent of the submerged particle for an increase in size ratio. We
the numbers indicated within brackets in the legend correspondpiot the valuesrps/ps corresponding to the steady stdsatura-
the value of interparticle friction of granular system. It shall bé&on regime; deviator strain c.a. 0.2&nd presented in Figure 7.
noted that, the kind of computations carried out here require sufrom Figs. 6 and 7 it can be concluded that, in a dense granular
stantial amount of computing power and hence we limited oyacking subjected to slow shearing, the nature of stress distribu-
investigation to the case of submerged particle with size ratio 1i@n in particles at steady state becomes increasingly hydrostatic
to see the effect of interparticle friction. It can be seen that, for ttees the particle size ratio is increased. It is fully dominated by the
values of coefficient of friction considered here, the behavior haydrostatic stress component for particles with a size ratio equal
not changed substantially. Hence, we carried out our analysis fto-or greater than c.a. 10. Hence it is reasonable to expect that, for
ther for the case of a granular system with size ratio 15 with thparticles with size ratio equal to or greater than c.a. 10 in a dense
coefficient of friction as 0.01 only. The reason that we selected system, the fluidity of the particles would increase. At the critical
study the effect of interface friction with the system having sizsize ratio, the submerged particle attained a value,ef ps equal
ratio as 10 would be evident later. to c.a. 0.2 at saturation regime.

—— Size ratio- 5 (0.3)
—o— Size ratio - 10 (0.3)
— Size ratio - 15 (0.01)

...... Size ratio - 7.5 (0.3)
—e— Size ratio - 10 (0.01)

— Size ratio - 5 (0.3)
—o- Size ratio - 10 (0.3)
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deviator strain

Fig. 4 Variation of the hydrostatic stress component of sub-
merged particle normalized to that of the entire granular sys-
tem during shearing
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deviator strain

Fig. 5 Variation of the deviatoric stress component of sub-
merged particle normalized to that of the entire granular sys-
tem during shearing
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— Szeraio-5(03) .. Szerdio-7.5(0.3) using discrete element method simulations. The particles were
-e-Sizerdio-10(03) e Sizeratio- 10(0.01) sheared in a periodic cell, subjected to axisymmetric compression
— Size ratio- 15 (0.01) test under constant mean stress condition. Results show that as the

size of the submerged particle increases, the number of contacts
would grow and contact forces at each contact contributes to the
stress tensor. This contribution has been bifurcated into hydro-
static and deviatoric stress components. As the size ratio in-
creases, the hydrostatic stress component of submerged particle
increases. For size ratio greater than c.a. 10, the nature of stress
distribution in the submerged particle at saturation regime is es-
sentially hydrostatic £ps/ps=c.a.0.2). The ongoing investiga-
tions on the related features of this study such as the fabric nature
of contacts, macroscopic stresses, and influence of packing is re-
ported elsewherg 14]). It is to be said that the present simula-

, « , tions were carried out with relatively small number of particles
o o 010 Q5 00 03 due to the limitations in computer power available. However, fur-

deviator strain ther support from the researchers is necessary to confirm the find-
Fig. 6 Variation of the ratio of deviatoric stress component to ings reported in this paper with simulations having large number
the hydrostatic stress component of submerged particle during of particles, thus allowing statistically more accurate calculations.

shearing
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A New Method for Nonlinear
Two-Point Boundary Value
Problems in Solid Mechanics

L.S. Ramachandra1 A local and conditional linearization of vector fields, referred to as locally transversal
g-mail: Isr@civil jitkgp.eret.in linearization (LTL), is developed for accurately solving nonlinear and/or nonintegrable
boundary value problems governed by ordinary differential equations. The locally linear-
D. Rgv ized vector field is such that solution manifolds of the linearized equation transversally
intersect those of the nonlinear BVP at a set of chosen points along the axis of the only
Department of Civil Engineering, independent variab_le. Within the f_ranjework_ of the LTL me_th(_)d, a BVP is treated as a
Indian Institute of Technology, constrained dynamical system, which in turn is posed as an initial value problem. (IVP) In
Kharagpur 721 302, India the process, the LTL method replaces the discretized solution of a given system of non-

linear ODEs by that of a system of coupled nonlinear algebraic equations in terms of
certain unknown solution parameters at these chosen points. A higher order version of the
LTL method, with improved path sensitivity, is also considered wherein the dimension of
the linearized equation needs to be increased. Finally, the procedure is used to determine
post-buckling equilibrium paths of a geometrically nonlinear column with and without
imperfections. Moreover, deflections of a tip-loaded nonlinear cantilever beam are also
obtained. Comparisons with exact solutions, whenever available, and other approximate
solutions demonstrate the remarkable accuracy of the proposed LTL method.

[DOI: 10.1115/1.1387444

1 Introduction von Karman's plate equations using a boundary element method

]%Irong with radial basis functions. Recently F] has proposed a
ew perturbation method coupled with the homotopy technique
or the solution of nonlinear problems. In contrast to the tradi-

lar among the researchers. Recently a new iterative mefd tional perturbation methods, the proposed method does not require

nas been proposed based on Pace approxmators o numefbgT PYATEtr n he eauaton. Howeer, even trougn e
analysis of nonlinear problems. In a companion papg} new pp y cap 9 9 Y

computational methods have been proposed to improve the ite||Lran-'.ted by the constraint that the basic trajectory-typech as

tive procedure based on the Newton-Raphson procedure. Thgggodlc or exponentially increasing or decrea3ifeg the nonlin-

techniques, based on the first-order perturbation technique, all‘ig\'?‘vr problem has to be similar to that of the associated linear prob-

to define an adaptive step strategy and to improve the trial so g which corresponds to the perturbation paramgten. In
tion for the first iteration at each step. The power series meth Holt_ttwer r_eC(_enlt ?evelopn;]efnt, tﬁm]thasa:evemp?ﬁtﬁ _genteral
([6]) and the double Fourier seri€g’]) method have also been illjial)t/ pgrs])ufnengni?)?]r\?ex ?ernere exe;eTess?gr?sMuse de'frof a_ost-
employed in the solution of large deflection problems of circul (t:)I/dir?/panal sis of thick beamsg¥herg is neveriheless no Fr)ecise
and rectangular plates, respectively. The perturbation techni d Wié]el ay licable method a\./ailable to date to solve difFf)erent
([8,9]) is a very popular tool among the researchers working in t Y app

broad area of buckling and post-buckling of structures. In an i

inds of nonlinear boundary value problems with continuous or
teresting paper[10]) asymptotic-numerical methods, based opiecewise continuous vector fields. It is believed that the present
perturbation techniques, are proposed to solve nonlinear boun

d thod, that attempts to “exactly” solve the nonlinear ordinary
value problems. The large deflection problem of circular platéi

erential equations at a countable set of points, should help us
has been solved by the dynamic relaxation mettiad,17). Bu- etter understand the behavior of typically nonlinear systems in
diansky[13] and Thurstor{14] have analyzed the nc;nlinéar dif- structural mechanics and the impact of nonlinearity on these sys-
ferential equations of the thin shallow spherical shells by conve}Fm responses.

ing the pair of differential equations into a pair of integral

"It is usually not possible to replace the nonlinear governing
equations which are then solved adopting numerical techniqugg.rerentlal equations in terms of some linearized equations even
Kai-yuan Yeh et al[15,16] have proposed an analytical solution

over small step sizes. The basic reason behind this is that tangent
to the von Karman'’s equations of a circular plate under a conce

baces in nonlinear differential equations are themselves functions
trated load. The finite element method coupled with iterative teiﬁ the dependent variables. Away out of this problem is, however,
nigues has been extensively used to solve geometrically and

qund in the proposed locally transversal linearizatiiL )
terially nonlinear problemg[17—-19). Pollandt[20] has solved

There exist many numerical and semi-analytical techniques
solving nonlinear boundary value problems. For instance, diff
ent versions of Newton’s methdfil—3]) happen to be very popu-

a- . . . ; . ;
method, wherein solution manifolds of linearized equations are

made to intersect transversally those of the given nonlinear equa-
o wh g hould be add g tions at a set of points along the independent axis where the so-
O WNOM COIresponaence should be agoressec. lution vectors need to be determined. The most important feature
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF f thi hod is that i isel . h .
MECHANICAL ENGINEERSfor publicatoin in the ASME durNAL oF AppLiEDME-  Of this method is that it attempts to precisely satisfy the governing
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 26nonlinear ordinary differential equations of the physical problem
2000; final revision, May 17, 2001. Editor: M. Ortiz. Discussion on the paper shoulgt these chosen set of points along the axis of the independent

be addressed to the Editor, Professor Lewis T. Wheeler, Department of Mechanical.: _ : : _
Engineering, University of Houston, Houston, TX 77204-4792, and will be acceptev riable. The LTL-based solution may, however, fall off consider

until four months after final publication of the paper itself in the ASMEJ@NAL OF & !y from'the aCtL_‘al path in between any two such Succe'SSive
APPLIED MECHANICS. points of intersections. The LTL method finally reduces a given
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set of nonlinear ordinary differential equations to a collection o, . To solve the above nonlinear ordinary differential equation
coupled sets of nonlinear algebraic equations in terms of the wmithin the framework of LTL, one needs to treat the boundary
known solution vectors at each of the chosen points along thalue problem as a constrained initial value problem, wherein the
independent axis. In the present study, the principle of LTL igft boundarys, of D is treated as the initial point to start inte-
applied to nonlinear boundary value problems, governing staticating the ordinary differential equations. Now, towards integrat-
deflections of beams, by treating them as conditionally dynamidaly these governing system of ordinary differential equations, a
systems. In other words, a boundary value problem is looked upprecise knowledge of all the-independent state variables st

as a constrained initial value problem, wherein one of the boune-s, is needed. However, only (0<m<n) of these conditions
aries(say, the left boundayyof the domain is treated as the initialare known as= s, and the remainingr(—m) are only provided at
point to start integrating the ordinary differential equations. Tahe right boundans, of D. Thus the remainingn—m) unspeci-
wards this, a precise knowledge of all the state variables at the Ig#d initial conditions,'w,, 1=1,, |5, ... l,_m. enter the LTL
boundary is needed. However, to begin with, only a few of thesgstem as unknown variables to be so determined as to satisfy the
conditions are known at the left boundary while the rest are spegir-end boundary conditiorfsv, , k=k;, k,, ... Ky_m. Itis now

fied at the right boundary of the domain. In this study, the umeeded to replace the nonlinear boundary value problem as de-
known initial conditions at the left boundary are treated as umcribed by Eq(1) by a set ofr conditionally linearized system of
known variables to be determined such that the resulting solutigpdinary differential equations wherein the solution manifold of
satisfies prescribed boundary conditions at the right boundagye ith linear system of ordinary differential equations transver-
Note that an usual dynamical problem, modeled as an initial valgg|ly intersects the original equilibrium path s, . Moreover
problem, is nonanticipative in that all the initial conditions argéheith linear system satisfigs initial conditions ats=s;_; (not
precisely known at the starting time, styt; . Thus the solution all of which are known a prioyiand should preferabléut not
vector at timet=t;,; may be calculated without a prior knowl- necessarily represent the original solutiow(s), the ith length
edge the of the solution &t=t;  ,. On the other hand, a boundarysegmentD;=(s;_;,s;], whereU;D;=D andN;D;= ¢, i.e., the
value problem, treated as a constrained initial value problem, g set. Letw((s)={ w((s) Zw)(s) ..."w)(s)}T denote the

obviously anticipative and thus, adopting the LTL procedurgector solution flow of theth linearized system of ordinary dif-
equations at all the transversal intersections must be written doygpential equations. It should be apparent that these linearized
before any solution can be obtained. This implies that the nonligyyations may at best be only conditionally linear, being condi-
ear algebraic equations at different intersections points are g§ned upon their exactly satisfying the given nonlinear differen-
coupled in this case. In the process, the conditionally constructgsj equation at a discrete number of point§=/{s|i
LTL solution automatically satisfies the conditions at the right 1,2,3...}, but not necessarily elsewhere. Since there are an
boundary of the domain. , uncountably infinite distinct linear ordinary differential equations
A limited numerical work has been carried out to demonstraieansversal to a givernonlineay ordinary differential equation
the capabilities of the proposed LTL technique. First, deflectionge procedures to derive the conditionally linear system of ordi-
and slopes of a tip loaded cantilever beam are obtained. Next, iy differential equations are consequently nonunique and un-
post-buckling equilibrium paths of a geometrically nonlinear cokountably many([23—25). Here a convenient and easily adapt-
umn with and without imperfections are obtained with variougple methodology of linearization using LTL, henceforth labeled
boundary conditions. Comparisons are made with exact solutions, the | TL-1 scheme, is first described.
whenever available, and other approximate solutions and in theror a complete clarity of defining the intersection point and
process, high numerical accuracy of the proposed method dgse of implementation, it is desirable to derive ttre locally
readily brought out. A higher order version of the LTL methoGinearized system such that it is alsedimensional and is prefer-
with still improved accuracy is also constructed, wherein the dy obtainable from the given nonlinear system with the simplest
mension of the linearized equation is suitably increased for g |east alterations. Towards this, iftie linearized ordinary dif-

higher path sensitivity. ferential equations are constructed by recasting(EcpverD; as
dw® . . _
2 The Methodology T =A(s)W +B(w; ,s)W+f(s)=V(W,s). )

The basic LTL methodology, as adapted for solving nonlinear
boundary value problems, is described in this section. For tiote that elements of the arbitrarily chosen maBig; ,s;) are
present study, only the subclass of boundary value problems géyactions of the still unknown solution vector 2w(s;) and thus
erned by the following system of ordinary differential equations i€9- (2) is clearly conditionally linear with constant coefficients

considered: provided that the vectow; is precisely known. Since Eq2) is
q required to satisfy Eq(1) at the left end of the domain segment
w D,, the initial condition vector to Eq(2) is W(s,_;)&w;_
- = = i i—1 i—1
ds AS)WHQ(W,s) +1(s)=V(w,s) (1) =w;_4. At this stage it will be useful to construct the locally

linearized variational equation associated with 89 based at the
rT{)oint w; e M, whereM is the compact solution manifold with a
8t:a| R" structure, as follows:

where w={lw, 2w, ...,"w}TeR", A(s) is an nxn state-
independent coefficient matrix associated with the linear ter
f(s):DCR—R" is the external(nonparametric force vector,
Q(w,s):DXR"—R" is that part of the vector field which is non- d

linear ins, andV(w,s) stands for the entire vector field. Let the Gs~ Pw=wV(W,8)y=A(S)y+ Dy, Q(W,S)y 3)
given beam length be divided into segments by nodeg +1

nodes and the nodal coordinatéalongs) be strictly ordered such where “D” stands for the vector derivative or Jacobian operator. It
that O=s57<$1<S,< ...<§<...<s,=L and h;=s;—s;_; is observed thaIDWiV(W,s) is the tangent map based at the point
whereieZ"*. Note that the only independent variable in sucky,e M with the usual Riemann structure of inner product norms
systems is denoted as= R and the solution domaiD=[s,s,] is  (see[26]). On the other hand, since E@®) is conditionally linear,

a closed and compact subsetRfThe boundary conditions are the corresponding variational equationatis obtainable by using

nontrivially defined on both the boundary pointsfIn particu- the same vector field without the external forcing term. Thus the
lar, for an n-dimensional boundary value problerm (0O<m variational equation is

<n) boundary conditionsiw(sy)2/Wg, j=j1, j2.....jm, are -
known at the left end, and the remainingr(—m) of them, i.e., W N T e Al -
Kw(s;) 2 w, , k=k;, ks, ... ky_m, are known at the right end ds Dy V(W,8) =A(s)y + B(W; .Sy “)
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Here DWV is the tangent space of the linearized systenwat where only real rootsy;, of the above equation are of interest.
M. In fact, the unknown solutiow; , being a point of intersec- €onsider, as a simple example, a one-dimensionat X) case
tion of the flowsw(s) andw((s), belongs toM "M, where With Q(w,s)=w* and B(w;,s;) =w{. In this case, Eq(9a) re-
M@ is the solution manifold generated Bf(s). This is a con- duces to
dition that can be viewed as a constraint on the nonlinear re-

2__
sponse. Consequently, a suitable constraint equation needs to be 2w;=0. (%)
arrived at. Towards this, the solution of the linear system of Eq. ) ) )
(2) is explicitly written down as In other wordsw; =0 is the only point on the real lind3, where

e the original and reconstructed tangent spatgs/ andTWiV, fall
wi(s) = g(w; vSvSi—l)(Wi—l+J IL/fl(wi 't’Si_l)f(S)dt) to be transversal. Thus if the solutions,, of Egs.(8) and (9)
Sio1 happen to coincide, then the conditionally linear flgwdoes not
(5) transversally intersect the nonlinear flaty ats; , thereby render-
wherey(w; ,s,s_1), is the(locally constructegifundamental so- N9 the LTL method ineffectiveAn obwogs way out is to change
lution matrix. While the first term on the right-hand side of B} Si Such that w changes away from its singular value
represents the complementary solution, the second one, involving” the procedure just presented the values vofs) and
integration, stands for the particular integral due to the exterr@¥(S)/ds from Egs.(5) and(6) are substituted in Ed1) for w(s)
forcing function, f(s). Equation(5) may now be differentiated @nddw(s)/dsto explicitly satisfy the identityv(s;) =w(s;) ats; .
once to yield owever, one can avoid this-step provided that the conditionally
. constant coefficient matriB(w; ,s;) the vector field of LTL Eq.
dw')(s) dy (2) is chosen such that
ds  ds

dy (¢,
Wi-1t 4 _ G () f(n)dy+1f(s) (6)

[B(w;,s) {wi} ={Q(w;,s;)}. (10)
wherel is the identity map in dimension. The constraint condi-
tion, i.e.,w;e MNM®, may be considered equivalent to the idenk case such a decomposition, as in Ed), is possible, the LTL
tity Eq. (2) becomes identical in form with that of E€l) ats=s;. In
_ this case, one straightaway obtains the transcendental and nonlin-
Wi=Wi. (") ear algebraic equations in the unknown veatgrvia the linear-
In order to satisfy the above identity(s) and dw(s)/ds from ized solution(5) as
Egs.(5) and(6) are substituted in Eq1) for w(s) anddw(s)/ds,

respectively, ats=s;. This leads to the followingh algebraic . S
nonlinear equations for the unknown vector. Wi =W = (Wi ,S;,Si_1)| Wi—1+ . g (wi,m,s-0)f(9)d7 .
i—1
Hi(W;,s;,8-1)=0 (84) 11
where the vector nonlinear functiqn, is given by Similarly one can construct the nonlinear algebraic equations at
d e d . all the (r —.1) nodal gtations{i.e., leaving out .the two boundary
i :Mwifl M nodes. As in the previous case, all these nonlinear algebraic equa-
ds ds tions are coupled with the unknown boundary vechay, |
s =l4,l,, ...l at the left boundary. The additionah{ m)
+ f b (wi, 8- ) F(p)dp—A(s)W(s) — Q(w; ,S)). equations, to account for the unknown vector at the left boundary,
Si-1 are made available, as before, by constructingthe TL system

(8h) (in terms ofw") and using the known boundary condition vector
kw,, k=Kq,k,, ... ky_m at the right boundary. As before, this

Similarly one can construct a system af{1)n algebraic equa- rth LTL system may aiso be used to further constrcmore

tions at intermediate nodal stations1,2, .....r—1. All these arllgebraic equations to take into account the unknown vector
algebraic equations, however, contain the unknown boundary CQMEyy t the right b d
dition vector'wg, 1=1,,l,, ... I, ats=s,. Hencen—m ad- Wr's P=P1,P2, - - .Pm, at the right boundary.

ditional equations are necessary to solve these set of nonlinear

equations. These additional equations are readily obtainable by

constructing the'th LTL system ats=s, followed by using the 3 Higher Level Locally Transversal Linearization

specified boundary conditions at the right end of the boundar()t-”_) Systems

ie., “w,, k=k;,k,, ... Ky_m. Moreover, thisrth LTL system ) ) ] )

may also be used to construntnonlinear algebraic equations to It is of interest to derive other forms of LTL schemes with

account form unknown elementw(® P=P1,P2; - - - P, &t capabilities to remain close to the original path as followed by the

s=s,. Solving all these r(_l)nJr'nr_ r’n+m=l;1r ,coupieg’and nonlinear system with the given boundary conditions, provided
- D= - .

nonlinear algebraic equations together, one can, in general, ob{jfit the chosen step-size is sufficiently small. The basic form of

all the unknown elements of the state vector at all the statiohs-: pregented in the previous section, only ensures transversal

simultaneously. Depending on the specific form of the vector fielgtersections at the two end-points of a chosen interval and not a

associated with the given boundary value problem, the number sistent closeness of the paths in b_etween. Itis thus obvious that

such coupled algebraic equations to be solved within the LT{€re iS @ scope to improve the basic LTL procedure, henceforth

framework may, however, be suitably reduced. A few such casgdled the zeroth-level LTL procedure, to improve upon its path

have been discussed in Section 4. Attention is now focused on € ostiﬁlivlgi//.elTE‘iI'SL g];ge dbeorg?nnaerybgi/iffsel;gﬁgg/l ggﬁ;ﬁgﬂ?i?ﬁeg‘&
analytical expressions for the two tangent mapgV and TwV constructing higher level LTL systems. Thus consider the case of

given, respectively, by Eqe3) and (4). It is clear thatT,,V is g nonlinear boundary value problem where the associated zeroth
transversal td',, V for almost allw; except at a countable numberlevelith LTL system is given by Eq2). Theith higher level LTL
of points satisfying the following1 nonlinear coupled algebraic €quation(2n-dimensional may be constructed by differentiating
equations: the original boundary value problem, given by Et), once with
respect tes and suitably freezing parts of the resulting vector field
D.Q(w;,s)=B(w;,s;) (92) ats=s;. This finally leads to
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W dw
a2 A g T

dwi)
ds

[dA(s) IB(w, ,s)]
+
ds Js

2]
|
7]
A
X

df(s)

wih+
ds

+A

(12)

-—,-1

tip
where thenxXn matrix A(dw; /ds) has the following typical ele- vy
ments:

n
By, [ d%w
ne 2, P e .
subject to the followingh boundary conditions and anotheiin- (@)
termediate constraints: a
Wh(s ) 2=y, g=12,...n |
< L >

dow,  dow_, ; ]
ds ~  ds =A(si-1) Wi_1+Q("Wi_1,5;-1)
+f(si—y), 9=1,2,...n. (14)

While the firstn initial (boundary conditions(14) are the same as
those used for the zeroth-level LTL system, the second constitute
a set ofn constraint conditions ai=s;_,. It may also be noted

NN

that these constraint conditions involving derivativessats; _; \

are implicitly defined in terms of the unknown vecter,_,,

which is the desired state vectorsats; ;. Satisfaction of these Lu=x,

constraint conditions therefore implies that in the first-level LTL |« »|

procedure, théth LTL solution path not only emerges from
=s;_4 with the same values of the state veciqr ; as followed
by the original solution path, but also with the same derivatives (b)
dw;_,/ds. The same equality is also ensuredats; , wherein a
transversal intersection now occurs between thedBnensional
linearized and nonlinear solution manifol@stained by once dif-
ferentiating the givem-dimensional system of ordinary differen-
tial equationg This obviously enhances path sensitivity of the
first-level LTL system, which was the objective of constructing
such systems. Proceeding in the same way, even higher levels ¥
LTL systems may readily be conceived.

4 lllustrative Examples L

In this section, a few beam elastica problems are studied usin_ ©
the new LTL methods. In addition, nonlinear beam buckling prob- ] ) ) )
lems in the presence of initial imperfections are also studied. fig- 1 (@) Tip-loaded cantilever beam showing the coordi-
the first problem, deflections and slopes of a tip-loaded cantile\@?rte axes (b) Cantilever beam with initial imperfection  (c)
beam are calculated. When a concentrated lo@tiié applied at >MPlY supported beam showing coordinates axes and initial
. . . . . . curvature
the tip of the cantilever, it is possible to obtain exact solutions in
the form elliptic integral$27]. The cantilever beam along with the
coordinate axes is shown in Fig(al. The distance & is mea-
sured along the length of the beam and denotes the projection For solving the boundary value problei6), the following
of “s” along the undeformed longitudinal axis of the beam. Theeroth-level LTL equation over thih subdomainD; and with
exact equilibrium equation for the problem, written in terms of thgjitial conditions{ 6" » ,d6/ " Y/ds= 6/ Y} is employed:
slope, 6, of the deflection curve, is _
d2e®
de —= =5
EI£=(L—X)Q (15) ds?
. wheref; = 6(s;). The complete solution of the conditionally linear
wheredd/ds denotes the exact curvature of the beam. Differentj: =~ ' ..2V/" . . : ; ;
ating the equation with respect tos™ and noting thatdx/ds brdlnary differential equation18) is easily written as

(18)

=cos#, one gets — Bis®
&0 0 (s):T+Cls+C2. (29)
2 _
ds? FATcosf=0 (16) The arbitrary constants of integrati@) andC, may be found via

initial conditions:
where?=P/E|. Equation(16) is the governing nonlinear differ-

ential equation for the problem and the associated boundary con- G_1=06,_, if i>1
ditions are
=0 ifi=1 (20)
01— 4—0 do(L) o _
0( )— 00_ ) dS - 0( — Y. (17) oi’—l: oi’—l . (21)
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After obtaining the expression fof(s), it is simple to derive do, do de,
analytical expressions fai’(s) in terms of the unknown solution s ds ( Sj ,yi( 0;, E))
parameterg; . Substitutingg"(s) and )" (s) in the original Eq.
(16) ats=s;, a nonlinear algebraic equation ) is obtained. In The second illustrative example is on the nonlinear buckling of
a similar way one may continue obtaining nonlinear equations far cantilever beam. The classical elastica problem of cantilever

=0. @7)

the conditionally constant parametgs(j=1.2, ... ... r)atall beam buckling is based on the exact expression for curvature
the intersection points. This results im™nonlinear algebraic and solutions of the resulting nonlinear differential equations may
equations inr+1 unknown parameterg; (j=1,2,... ... ) be readily obtained in terms of elliptic integral28]). In this

and @} . However, it may be observed that for the present problegase, the governing nonlinear differential equation may be written
6;=0 is known at the right end i.es=L. Thus, in the condi- as
tional initial value problem approach, the unknowdgsis to be so P
. . . - ; . dse P
determined as to result in a constrained dynamical trajectory with — 4+ —sine=0. (28)
the curvature vanishing at=L. This constraint condition leads to ds’  El

the required additional equation via the analytical expression . . .
available forg"(s). ' The associated boundary conditions are the same as in the pre-

Solving the above nonlinear algebraic equation one obtains { |§us_example.hF_okr] thebdpresgnlt) protélem,hthe zeroth(—}:e_vc_sll Il‘TL
value of # at all the chosen points along teexis. The Cartesian ua_tl_on ov_(eir_tl)et_(is_ul) Oma—'?(i_‘l?n wit ass_omatt_e Initia
coordinates of the deflected curve at any pdint is evaluated CONditions{#iy”,déi,"/ds=6{7, 7} may be written in many

from the relation ways. Here two different ways of linearizations are tried. In the
first method, the following form for the linearized ordinary differ-
Sit1 ential equation is tried out:
Yir1=VYit sinfds (22a)
i d?e [
Sive Q=fasm0i=,8i. (29)
xi+1=xi+f coséds. (22b)
S One could also linearize E@28) as

The above integrations are accomplished via the two-point Gauss-

- drat | d?¢ | P sing\—
ian quadrature rule. ) . —+|=———]6=0 (308)
The above problem may also be solved using a first-level LTL ds* |\El 6
method to obtain even better results. Here the linearized equation
over theith interval takes the form or
d¥eh A

Instead of substituting?”), and 8" in the original nonlinear Where \?=((P/EI)(sin6,/6)) and 6,=6(s=s;). In both these
equation for obtaining the nonlinear algebraic equations, one ce@ses, substitution of the linearized solution into the nonlinear
alternatively set up the required nonlinear algebraic equati@fdinary differential equation is avoided. In the first method, so-
(without a need of substitutiorby choosingB;=\?cos@). In lution of the conditionally linear Eq(29) is th(_a same as given in
such a case, it is clear that the vector fields of the original nonlifid- (19). In the second method, the two eigenvalues needed to
ear differential and linearized equations become identica$ atconstruct the solution of Eq30b) are given by

=s;. Hence one can set up the algebraic equatio~ad; using

P sin0i
0(s=s)=0(s=s). (24) M2 = Vg g (31)

Thus solutions of Eqg16) and(18) would instantaneously match  pepending on the value of the argument within the square root
ats=s; if one could find a real roo#; of the following transcen- possible cases arise. In the first casenfet 0. This implies
dental equation: that the eigenvalues are complex conjugate and are given by

6,— 0(si .Bi(6))=0 with B;=\?cog ;). (25) P sing,

=+ = _ i=+/—
The above procedure may easily be extended to construct higher Mo==1B B El 6 '’ J 1. (32)
order LTL systems. For instance, the solution parametén the

first-level LTL Eq.(23) may be chosen ag=—\2sin(®)# . The The solutions of the conditionally linear E(g0Ob) may be writ-

boundary conditions are ten as
0_,=6,_, if i>1 6(s)=C, sin\s+C, cos\s (33)
=0 ifi=0 (26a) Where the constants of integration are evaluated from the bound-
- ary conditions. In the second case one has 0. Thus the eigen-
d?6,_, 5 o values are real and are given by the E8fl). The solutioné(s)
gz~ Mcoddi-y) it i>1 takes the form
=—\% if i=0. (260) 0(s)=C, exp(Bs) + C, exp( — BS). (34)
Finally, the following pair of nonlinear algebraic equations in The rest of the steps for implementing the LTL method are
terms of#, andd@; /ds may be arrived at precisely the same as already outlined previously. As a third prob-
lem, buckling of a cantilever beam with initial curvature is con-

-0 sidered. The equilibrium equation for the initially curved cantile-
ver column may be written as

onlo. )
0i— 0\ s, 0i1E
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d?e d?6, . The simply supported beam-buckling problem is solved as the
El(wf e +Psing=0 (3%) next example to further demonstrate the application of the pro-
posed LTL method. The governing equilibrium equations and the
or associated boundary conditions are
2
d’¢ P d?6, d°¢ .
P + —sing=0 (41a)
E‘FEISIHG _97d . (35)) E El
The notations are shown in Fig(k). The tangent angles of the ¢'(0)=0 and ¢'(L)=0. (41
deformed and undeformed column &eand 6y, respectively. The The above nonlinear differential equation is solved exactly in the
initial shape of the column is assumed to be of the form same manner as explained in the case of cantilever buckling prob-

lem except that the boundary conditions are different in the
(36) present case. The last illustrative example considered here is that
of the nonlinear buckling of an imperfect simply supported col-
ymn. The initial shape is expressed in the present case as

0p=~Aq| 1 il
0=Ao| L. 7CO8 5

where A is the amplitude of tangent angle of the undeforme

column. The linearized equation over the interalmay be writ- TS
ten as 80=Ao CO§ 1~ |- (42)
d?6 (P sin Oi\— The rest of the procedure is identical to the one already explained
e =i L (378)  for the case of cantilever beam problem with initial curvature.
|
or 5 Numerical Results
e The remarkable accuracy and potential of the proposed method

o \Zp=A (77_5) ZCOS(W_S) (37h) to solve nonlinear boundary value problems is demonstrated in
ds? ol 2L 2L this section via a few numerical results corresponding to the well-
. . known nonlinear beam problems as outlined in the previous sec-
The functional form of the complete solution for the above ordigo i Taple 1, deflections and slopes at the free end of a tip-
nary differential equation may be written as loaded cantilever beam are given. It is clear from the table that the
P sind. results compare well with _the exact res(ﬂt?])_. It may be ob-
A2>0, Nio=*jiB, B=A [ ji=V-1, served here that the LTL-irst leve) method gives better results
’ El 6 than the LTL-1(zeroth-level method. In Fig. 2, the deflected
— ) shape of the cantilever beam is shown for various values of con-
6(s)=Asin(Bs)+B cog Bs)+p(s) (38)  centrated load. The difference between the calculated values as
obtained from LTL-1 and LTL-2 and the exact results can hardly
be represented graphically. They indeed compare very well. In
[P siné, Fig. 3, the tip deflection of a cantilever beam under compressive
A2<0, Nio=%B, B=\/= - in-plane load as obtained from LTL method is compared with the
El 6 exact result((28]). The results obtained via LTL-1 and LTL-2
— methods are shown in Table 2. In Table 3 the results obtained by
0(s)=Cy exp(Bs) + Cz exp(— BS) +p(s). (39 using the LTL-1 scheme and different forms of the LTL-based
In the above expressiop(s) denotes the particular solution andordinary differential equationssee Eqs(29) and (30)) are pre-
rest of the terms on the right-hand side constitutes the compR&nted along with the exact results. Between the two LTL-1 meth-

mentary solution of Eq(37b). The particular solution is given by ©dS it is seen that LTL-12) works better. This is obvious as it
takes into account the frequency information of the system while

and when

a2 linearization. It may be observed from the above tables and fig-

Ao oL s ures that LTL procedure works accurately even for very high non-

p(s)=| ——o— 05< —) . (40) linearity. Since the error between the LTL-1 method and the exact

T 2 2L results are very small, all further calculations are carried out with

2L LTL-1 method alone. All the further results are obtained by setting

Table 1 Results for a tip-loaded cantilever beam
Zeroth-Order LTL First-Order LTL
80 segments 40 segments Exact
Q_L2 P (L-u) 0 (L-u) P (L-u)
El Yip /L (radians L Yip/L (radians L Yip/L (radiang L

1.0 0.3015 0.4611 0.9436 0.3017 0.4614 0.9436 0.3017 0.4613 0.9436
2.0 0.4928 0.7807 0.8398  0.4934 0.7818 0.8394  0.4935 0.7817 0.8394
3.0 0.6022 0.9843 0.7466  0.6031 0.9861 0.7456  0.6033 0.9860 0.7456
4.0 0.6687 1.1194 0.6725  0.6698 1.1211 0.6710  0.6696 1.1212 0.6711
5.0 0.7124 1.2132 0.6142 0.7136 1.2153 0.6123 0.7138 1.2154 0.6124
6.0 0.7431 1.2813 0.5676 0.7444 1.2840 0.5654 0.7446 1.2837 0.5654
7.0 0.7659 1.3324 0.5295 0.7672 1.3350 0.5270 0.7674 1.3350 0.5271
8.0 0.7835 1.3721 0.4978  0.7848 1.3749 0.4951  0.7850 1.3744 0.4952
9.0 0.7976 1.4032 0.4651 0.7989 1.4058 0.4681 0.7991 1.4055 0.4682
10.0 0.8091 1.4279 0.4479 0.8104 1.4302 0.4449 0.8106 1.4303 0.4450

Yiip=deflection at the tipg=slope at the tip
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Fig. 2 Load displacement curves for a tip-loaded cantilever beam
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Fig. 3 Cantilever buckling:

deflection

PIP., versus normalized tip

up the nonlinear algebraic equations without resubstituti(s)

and #”(s) in the original nonlinear equations. In Fig. 4, the shape
of the cantilever column under different loading intensities are
shown. All these shapes have been computed using the LTL tech-
nigue. In the next figuréFig. 5 the variation of axial strain is
plotted againsP/P, for the case of imperfect cantilever buckling
for different amplitudes of imperfections. Neffig. 6), the non-
linear buckling problem of a simply supported beam is solved
using the LTL method. In Fig. 7, the/P., versus central deflec-
tion plot is compared with that of the exact solution. From the
figure it may be observed that the LTL method works very well
for the nonlinear boundary value problems. The shape of the sim-
ply supported column under different intensities of load is shown
in Fig. 8. The LTL method is promising as it can predict any shape
without difficulty. The results are also shown in Table 4 along
with the exact results. In Fig. 9 the axial strains are plotted against
the P/P, for the case of imperfect simply supported beam. As the
imperfection amplitude increases, the column deflects more for
the same given load. THe/ P, versus central deflection is shown

in Fig. 10.

Table 2 Comparison of zeroth and first-order LTL methods in the case of nonlinear buckling of
cantilever beam

Zeroth-Order LTL

First-Order LTL

(LTL-1) (LTL-2) Exact

P 0 0 0

Per (radian Xa Ya (radian Xa Ya (radian Xa Ya
1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0
1.0038 0.1846  0.9915 0.1172 0.1741  0.9923 0.1105 0.1745 0.9924 0.1108
1.0153 0.3918 0.9619 0.2456 0.3485 0.9698 0.2191 0.3491 0.9698 0.2194
1.0351 05522  0.9249 0.3407 0.5233 0.9325 0.3237 0.5235 0.9325 0.3239
1.0636 0.7179  0.8744 0.4332 0.6970 0.8816 0.4216 0.6981  0.8812 0.4222
1.1021 0.8885 0.8104 0.5206 0.8728 0.8170 0.5126  0.8727 0.8170 0.5125
1.1518 1.0586 0.7351 0.5988 1.0473 0.7410 0.5933 1.0472 0.7410 0.5932
1.2147 1.2307 0.6495 0.6663 1.2218 0.6547 0.6626 1.2217 0.6546 0.6626
12939  1.4028 0.5550 0.7219 1.3962 05594 0.7195 1.3963 0.5593 0.7195
1.3932 1.5756 0.4534  0.7642 1.5710 0.4570 0.7627 1.5710 0.4569 0.7627
1.5184 1.7489 0.3462 0.7923 1.7452 0.3490 0.7915 1.7453 0.3489 0.7915

6=slope at the free end of the beam

Xa,=(L-u)/L, projected length of the beafsee Fig. 1b))
Ya=Nondimensionalized deflection at the tip of the cantilever beam
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Table 3 Nonlinear buckling of cantilever beam: comparison of results obtained from two dif-

ferent ways of linearizations

LTL-1() LTL-1(2)
Eq. (29 Eq. (30) Exact
i 6 4 0
Per (radian Xa Ya (radian Xa Va (radian Xa Ya
1.0153 0.3918 0.9619 0.2456 0.3477 0.9700 0.2186 0.3491 0.9698 0.2194
1.0351  0.5522 0.9249 0.3407 0.5220 0.9328 0.3230 0.5235 0.9325 0.3239
1.0636 0.7179 0.8744 0.4332 0.6952 0.8822 0.4206 0.6981 0.8812 0.4222
1.1021  0.8885 0.8104 0.5206 0.8705 0.8179 0.5115 0.8727 0.8170 0.5125
1.1518 1.0586 0.7351 0.5988 1.0454 0.7423 0.5920 1.0472 0.7410 0.5932
1.2147 1.2307 0.6495 0.6663  1.2180 0.6564 0.6614  1.2217 0.6546 0.6626
1.2939 1.4028 0.5550 0.7219  1.3932 0.5616 0.7184  1.3963 0.5593 0.7195
1.3932 1.5756 0.4534 0.7642 1.5674 0.4595 0.7618 1.5710 0.4569 0.7627
1.5184 1.7489 0.3462 0.7923 1.7413 0.3520 0.7909 1.7453 0.3489 0.7915
2.541 24314 —-0.0982 0.7535 24382 -0.1026 0.7519 2.4435 -0.1070 0.7500
4.029 2.7871 —-0.3362 0.6274 2.7874 —0.3361 0.6274 2.7925 —-0.3400 0.6250
9.116 3.0685 —0.5726 0.4249 3.0693 —0.5732 0.4254 3.0718 —0.5770 0.4210
6=slope at the free end of the beam
Xa=(L-u)/L, projected length of the beafsee Fig. 1b))
ya=Nondimensionalized deflection at the tip of the cantilever beam
2El
AT
P/P_=1.0
1015 —P/P_ =1.0
1.0 - . I =1.0153
—_— =1.0636
0.8 4 ———— =1.1021
—_— =1.2147
06 — =1.2939
— =1.3932
0.4
— =1.5184
D.b 0.2 4 — =2.5410
a 1 —_— =4,0290
0.0 —_— =9.1160
7
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Fig. 4 Deflected shape of the cantilever column under different levels of
axial load
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Fig. 5 Imperfect cantilever buckling: P/ P, versus axial strain Fig. 6

for different amplitudes of imperfection
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Fig. 8 Deflected shape of the simply supported column under
different levels of axial loads as predicted by the LTL
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Fig. 9 Imperfect simply supported column buckling: PIP,,

versus axial strain for different amplitudes of imperfection

Initially a convergence study was carried out to decide on
the number of segments, required in the LTL-1 procedure to
accurately predict the deflection profile of the column and the
post-buckling load. Details of these results are not shown for the
sake of brevity. It has, however, been observed from the study that
the converged results are obtained using 40 segments in most
cases. However, when the beam shapes are severely distorted un-
der very high curvature nonlinearity, 40 divisions are not enough
to obtain converged results. In such cases, more number of divi-
sions(about 120 are necessary to obtain the converged results. In
the present work, 120 divisions are taken in all the numerical
study.

As mentioned earlier, one has to solve all the nonlinear alge-
braic equations simultaneously in order to obtain the equilibrium
path of the structure. In the present study, a globally convergent
nonlinear equation solver based on line searches and backtracking
along the Newton directionsee[29]) has been adopted for solv-
ing the system of the nonlinear algebraic equations.

6 Discussion and Conclusions

A novel and remarkably accurate local linearization methodol-
ogy, called the locally transversal linearizatiL ), is proposed
in the present study for solving a class of two-point nonlinear
boundary value problems of relevance in structural mechanics.
Given a system of nonlinear ordinary differential equations, the
LTL method derives a set of conditionally linear ordinary differ-

Table 4 Support slopes and center deflections of a simply supported beam under axial com-
pressive load

Zeroth-Order LTL Results First-Order LTL Results Exact Results

P a w a w a w

P, (radian T (radian T (radian T
1.004 0.179 0.056 0.178 0.055 0.175 0.055
1.024 0.435 0.134 0.435 0.135 0.436 0.136
1.064 0.700 0.209 0.700 0.210 0.698 0.211
1.102 0.873 0.255 0.873 0.255 0.872 0.256
1.152 1.049 0.294 1.049 0.295 1.048 0.297
1.215 1.224 0.328 1.223 0.329 1.222 0.331
1.294 1.399 0.356 1.398 0.358 1.396 0.360
1.393 1.575 0.377 1.573 0.379 1.570 0.381
1.518 1.752 0.391 1.749 0.392 1.746 0.396
1.885 2.107 0.396 2.104 0.399 2.094 0.402

’E

Note: PC,:?; w= center deflection; and=length of the column

a=slope at the support
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164 technique is not burdened with the task of having to assume some
form for the nonlinear equilibrium path. In fact, irrespective of the
complexities of the equilibrium paths, the principle of LTL is able
to predict them with reasonabland often with very highaccu-
racy. Efforts are presently on to apply the same principle for
boundary value problems governed by nonlinear partial differen-
tial equations.
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Introduction coelastic materials. The standard Maxwell fluid model was chosen

The existing techniques for modeling stiffening, nonlinear vids the foundation to capture the SO“er."”g behaw_or that is typi-
ally present outside the low-load region. A nonlinear second-

coelastic materials have a variety of limitations. Quasi-linear vis- . . . '
coelasticity(QLV) and other integral techniques require integragé?gerl)sr’.?ﬂ% g)mmt;?r?afi\ggegl(l)?/vg?rzaelIgle(t:c())rgz?olrlggftgriﬁzntggcap-
tion of time-dependent material functions as modeling parametet Jre the nonlinear stiffening response of the initial low-load region

resulting in an increase of computational complexity and oftenW ile the Maxwell fluid portion can model the linearity and even-

lack of physical understanding of the model’s coefficients. Nu- . . . .
merical solutions provide approximations to the exact solutio?‘lual softening of the material. While each of the two springs has

and are susceptible to instabilities. Spring-and-dashpot phenon§_own unique contribution to the overall stiffness, it is easiest to

enological models describe the force-time relationship wit)é'ew the parallel combination as a black-box equivalent spring.

constant-value modeling coefficients. However, without the inclu-r[:gs’Jggrgt?cu':/easleg:]:g:n\?vifﬁftfﬂgsz Isrgg::nhpr;zzd ?}f ggg} r'?;ﬁ(r:_
sion of additional nonconstant elements, these models are in 4 P : pp ’ phy

; X . idns on each spring can be suspended, as long as the resulting
pallzletrﬁfs psrt% %l;uggcr;?]rslltlgsf ngﬁlgtéf?;r?fgef&_ dashpot mo ivalent spring does not violate physical limitations. For ex-

' S ple, a negative linear spring constant, while not physically rea-
was developed to capture the strain stiffening response of the Igwnable in combination with a positive quadratic spring results in
load region of some viscoelastic materials. The resulting model i > lent stiff betw pf_ ¢ g d pd 9
capable of capturing both strain stiffening and material softenin%n equivaient stiness between Tirst and second order.
Additionally, for constant rate elongations, a closed-form solution

was found for the resulting Riccati differential equation. Model Derivations
The major drawback of adding a nonlinear element to the
Nonlinear Model Development model is the loss of linearity in the differential equation that de-

scribes the system. Finding a closed-form solution to such equa-
gc_)ns can be quite daunting. The current model was derived with-
out any simplifications, for a constant rate of displacemeantp

the end result of a closed-form solution. By first imposing equi-

A nonlinear Maxwell fluid spring-and-dashpot model was d
veloped to describe the complex nonlinear behavior of some v
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Fig. 1 The proposed nonlinear model, consisting of a parallel arrangement of a
linear spring (k;) and a second-order spring (k,), in series with a linear dashpot

(c).
L=Ly+a(t—t,) (2a) In order to determine the general solution, the reduction of
order was implemented to gain the complementary solution. Al-
L=Lotx+é (2b)  lowing the complementary solution to be represented(as the
in which the subscripb denotes the start of elongation. Thus, Z€neral solution takes on the unique fof@), as guaranteed
test starting at timé,=0 produces the following relatioryt=x X(1) =%,(t) + u(t) = at+B+u(t) (62)
+ 8. Solving for § and substituting intd1) yields P
ck=kKy(at—x)+ Kyl at—x)2. 3) X()=a+u(t) (6b)

rP?’é the fundamental existence and uniqueness theorem. Substitut-

Noting that the dashpot displacement at the onset of elongatio I into (4) yields

zero-valuedx(0)=0, and allowingu=k; /c, and é=k,/c, the

nonlinear Eq(3) can be rewritten in the Riccati differential equa- a+U=EB%+ 2¢Bu+ £u?— wB— pu. 7)
tion form
) ) This, in turn simplifies to a Bernoulli equation by employifigy
x=a(t)x*+b(t)x+c(t) @) and(iii),
where U=(2£B— w)u+ U2 (8)
a(t)=¢ This result is a nonlinear first order ordinary differential equation.
b(t)=—(u+2&at) Since the coefficients are constant, it is_ separable. Letitng
=2¢B—pu, (8) can be separated and rewritten as
c(t)=at(u+éat). du
Determining a Solution u( o+ &u) =dt ©)

The aforementioned Riccati E¢4) is not readily solvable by Expanding with partial fractions gives
any nonnumerical techniques, and to the best knowledge of the

authors, has not previously been solved in closed form. In order to 11 ¢ du=dt 10
solve this nonlinear nonhomogeneous first-order differential equa- dlu (p+Eéu) u=dt, (10)
tion, a particular solution is first needed. By picking a solution = . o .
form of x,=At+B, X,=A, (4) becomes which when integrated and simplified gives
A= E(At+B)2— (u+2€at)(At+B) +at(u+£at).  (5) . PpKe” a1
=,
Matching orders ot yields 1-K¢e
A— ¢R2_ ; Applying the initial condition, x(0)=0, to (6a), u(0)=u
O(1):A=¢B"~uB M =—B, and solving forK yields °
O(1):0=2¢AB— uA—2¢aB+ pa (i) B
O(t2):0=¢A2—2¢aA+ Ea?. (i) K= Bi—g 12)
Solving the above equations férandB gives The complementary solution becomes
(iii): A=a - $Bet
(i): 0=0 identically satisfied U= Bz —e?) 4 (13)
wE '/M2+4§(1 Thus, the unique general closed-form solution is
i)) B=——Fr—.
! 2¢ t)=at+B —dee{m 14
Thus,x,=at+B is a particular solution t¢4). X()=at+B+ Beé(l—e?h—o (14)
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Fig. 2 Parameter sensitivity illustrated via force-time plots of numerical solutions
(black line ). (a) Three decades of linear spring stiffness,

0.9 1

(thick gray line ), and negative root closed-form solutions
k,=0.1, 1, 10 N/cm (@=10cm/s, k,=1 N/cm?2, c=1 N-s/cm). As k, increases the slope increases and the nonlinear-

ity of the low load region becomes less prominent. Variation of the linear stiffness
k, shortens the time needed to reach it.

load value, however, increasing

z
4
0 i R i i i .
0 01 02 03 04 05 06 07 08 09 1
Time (sec.)
z
:
w
:
-0.2! " L " . L
0 o1 02 03 04 05 06 07 08 09 1
Time (sec.)

(hollow squares ), positive root

(k4) has no effect on the peak
(b) Three decades of second-order spring

stiffness, k,=0.1, 1, 10 N/em? (@=10cm/s, k;=1 N/cm, ¢=1 N-s/cm). As k, increases the slope increases and the

nonlinearity of the low load region becomes more prominent. Variation of
value, however, increasing k, shortens the time needed to reach the peak load.
=5, 10, 20 cm/s (k;=1 N/em, k,=1 N/cm?, c=1 N-s/cm). Note that the stiffness increases with increasing
(d) Three decades of dashpot values,

load approaches a value of

where
uE Jul+déa
2¢

¢=2(B—n

a=constant rate of displacement.

Therefore, the resulting velocity equation is

¢°Be’(Bé— )

c-a as time evolves.
=10cm/s, ky=1 N/cm, k,=1 N/cm?). An increase in the viscous damping,
well as the time required to reach maximum force.

X=a+ Bzfzezd’t_ ZBfed’t(Bf_ ¢)+(BE— ¢)2 '

When examined via limit analysi$15) obtains

lim (%) = a.

s

Journal of Applied Mechanics

(15)

(16)

k, has no effect on the maximum load
(c) Varying displacement rates, «
«, and the
c=0.1, 1, 10 N-s/cm («
¢, increases the value of the peak load as

This result makes physical sense since at long time periods the
velocity of the dashpot will approach the controlled displacement
rate.

Higher-Order Models

To expand the range of order in the equivalent spring, and
thereby increase the model’s flexibility, additional spring combi-
nations were explored. Higher-order models were created by add-
ing either a third-order, or a third and a fourth-order spring, each
in parallel, to the linear and second-order springs, resulting in
equivalent springs capable of describing responses with cubic and
quartic components, respectively.

An exploration of the associated differential equations shows
that if a general polynomial function is assumed, and closed-form
solutions are sought, then only nonlinear representations up to and
including degree four are allowed by the mathematical approaches
taken herein. A deeper exploration shows that no closed-form so-
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lutions for general polynomials above degree two are admissible. Table 1 Numerical solution instability ratios
The second-degree model admits an exact solution because=the

complementary equation is separable, and the dependent variable, alc ki /c kp/c
u, can be solved explicitly as a function of time. However, for the  >300 1 1
third-degree model, the complementary solution is again sepa- 1 >314.6 >3100

rable, but no explicit solution fou(t) can be found. Further, an
expansion solution can be found, but the expansions must be tran-

cated after the second degree so that an explicit representation of

u(t) can be found. This is due to the fact that closed-form solu- The numerical solution showed great agreement with both
tions for the roots of polynomial equations can only be found, iBlosed-form solutions; however, there were some extreme cases in
general, up to the fourth degree. Using this expressian(f an Which the numerical solution became unstalfteg. 3). Stability
approximate solution for general polynomials of degree three cliiits were found for each parameter by setting all parameters
be found. The fourth-degree model yields a separable equati€fual toc, and increasing a particular parameter until instabilities
but is not generally integrable. The same holds true for all geneRggan to aris¢Table 1.

higher degree models. Discussion

. This particular type of model was chosen due to its relative
Model Behavior simplicity and computational clarity. As noted by Lockétt],

The closed-form solution of the model has two solutions, cofThe main value of spring-dashpot models is in providing a rela-
responding to the positive and negative root8dl4). A numeri- tively simple qualitative picture of the manner in which viscoelas-
cal solution was obtained within MATLAB using a medium ordetic materials behave, and this is only feasible when the models
method to solve nonstiff ordinary differential equations. EquatiogPntain only a few elements.” Thus, our three-element model fa-
(4) did not exhibit rapidly decaying solutions, and thus was ndilitates an improved understanding of material behavior, and how
considered stiff. The positive root, negative root, and numerictlis affected by the individual model components.
solution force-time traces were plotted for a wide rangk;ofk, The positive aspects of model simplicity do not come without a
andc values, demonstrating the model’s ability to reproduce inFost. In order for a differential equation description of materials to
tial nonlinear stiffening, followed by material softenirigig. 2.  function over a wide range of time or frequency, it is usually

The sensitivity of the force-time relationship to given paramequired to have higher order equations with many teff8$.
eters was studied by varying one coefficient while holding th&ttempts to increase the order of our model's equivalent spring,
other three constant. As linear spring valugs) (increased, the and therefore increase model flexibility, resulted in unattainable
nonlinearity of the low-load region became less prominent, tfgosed-form solutions. Thus, this model sacrifices a degree of flex-
slope increased, and the model approached a standard Maxwlity for an increase in the understanding and clarity of the ma-
fluid response(Fig. 2(@)). Similarly, an increase in the second-terial response, as do the classic models of Maxwell and Kelvin
order spring k,) increased the slope, but made the nonlinearitig0igt).
more prominen{Fig. 2(b)). Increasing either spring constant re- Time and frequency flexibility is typically achieved through the
duced the time needed to attain peak load, but had no effect onuge of integral equations. While integral equations greatly im-
value. As the displacement rate) increased, both stiffness andprove model flexibility, they do not clearly establish the material's
peak load increase(Fig. 2(c)). The viscous dampin¢) directly —response in terms of an equivalent stiffness, its order, and the

affected the maximum value and time period of the load-timgrength of viscous damping. These properties may be available;
responsdFig. 2(d)). however, they are not as clearly identified, and their contribution

is hard to separate from the overall response.
The closed-form solution of our model was determined for
] constant-rate displacement-control testing. The model is fully ca-
Force vs. Time pable of handling rates of displacement that are functions of time;
0.12 T d T 7 T ) T . ) however, the process taken to obtain the closed-form solution will
not provide a particular solution to the resulting differential equa-
tion. Therefore, it appears that numerical solutions remain the
only option for the treatment of nonconstant displacement rates.

0.1

Conclusion

A new phenomenologic model, while a fluid model, captures
both the nonlinear stiffening and the softening response exhibited
by a variety of viscoelastic materials. The relative simplicity of
this model helps isolate the contributions of the viscous damping,
linear, and second-order stiffness. Moreover, the closed-form so-

0.08 ~

Force (N)
o
3

0.04 . - N ) . .
lution to the resulting Riccati differential equation provides a pre-
viously unavailable exact solution.
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Structural Modification
for the Assignment of Zeros
5.emottershead | USING Measured Receptances

Alexander Elder Professor of Applied Mechanics,

Department of Engineering, In many engineering applications it is desirable to assign the zeros of point or cross
The University of Liverpool, receptances to particular frequencies. This means that at the chosen coordinate no vibra-
Liverpool L69 3GH, UK tion will be experienced at those frequencies. It is shown how such an objective can be

achieved by means of passive stiffness, damping, and mass modifications to the structure.
The frequency responses of a subsidiary eigenvalue problem, the eigenvalue problem of
the zeros, are determined in order that the methods of inverse structural modification may
be applied. The technique requires only a small number of measurements from the struc-
ture in its unmodified condition. Numerical and physical experiments are carried out to
illustrate the application of the method.DOI: 10.1115/1.1388616

Introduction to adjust the zero&ntiresonanceof measured receptances. But

There are two structural modification problems: forward anglIS Is a desirable objeqtlve, with many engineering z_appllqatlons,
inverse. Theforward structural modification problers to deter- ecause the zeros de_fme_ tho_se frequencies at which \/_lbr_atlons
mine the eigenvalues and eigenvectors of a system with a knofl{§@PP€ar. The dynamic vibration absorber, a good description of
modification to its stiffness and mass terms. This proceduf@hich can be found in Inmaiill], is really a device for the -
sometimes known as re-analysis, is common in vibration optinfSSignment of point-receptance zeros. In the case of the classical
zation and in finite element model updating. Usually a close apndamped vibration absorber the zeros lie on the imaginary axis
proximation to the eigenvalues of the modified system is accef the complex eigenvalue plane and when the absorber includes a
able. Baldwin and Huttor1] reviewed a number of methodsdamper the zeros generally become complex. Ram and Eli2hy
including Rayleigh quotient, sensitivity, and perturbation tecrdetermined the parameters of a multi-degree-of-freedom un-
niques. Ram[2] determined the eigenvalues of damped sultamped absorber secondary system by solving an inverse eigen-
systems with known connections using transfer function or spegalue problem. In a recent survey paper Sun ef1d] cited some
tral and modal data from the separate subsystems. 90 papers on passive and active tuned vibration absorbers.
Theinverse structural modification problers to determine the  The zeros of different point and cross receptances generally
modification (the added stiffness, damping, or maslsat will occur at different frequencies, whereas the poles are unchanged.
bring about a desired change in the eigenvalues and eigenvectgigy can be determined by solving a “subsidiary” eigenvalue
of a v_ibrating system. The inverse problem is general_ly more dBrobIem. The subsidiary problem is symmetric for point-
manding than the forward problem and can be applied to M&aqeptance zeros, and asymmetric for cross-receptance zeros
sured vibration data to determine a modification without the ne 9|ottersheac{14]). In numerical studies, without damping, the
for_a finite_ element model. The modification may be passi_ve E{Jbsidiary matrices are formed from the étiffness and r(’leswi)
active. WeissenburggB] and Pomazal and Snydpt] used unit- matrices of the system by deleting a single row and column. When

rank modifications to relocate a single natural frequency. Tr? d col h th index th i tri
other natural frequencies were affected by the modification but row and column have the same Iindex the resuiting matrix
controlled. Mottershead and Lallemési used the same method System will be symmetric and its eigenvalues will be the zeros of

to bring about the cancellation of a pole with a zero thereby cré- Point receptance. They will interlace the eigenvalues of the
ating a vibration node. Bucher and Brai#y7] developed an exact Poles. When the deleted row and column have different indices
method for the assignment of vibration mode shapes from specfth‘& resulting matrices will not be symmetric, interlacing rules will
and modes, including measured left eigenvectors. The left eigdlft apply, and the eigenvalugsross-receptance zejomay be-
vectors were determined from noisy measurements using reguk@me complex and/or defectiv#lottershead15]).
ization by L-curves. Tsuei and Yd@] described a method for In this paper it is shown how the eigenvectors and frequency
shifting natural frequencies by using measured frequency mesponses of the subsidiary eigenvalue problem of the zeros can
sponse data. Li et aJ9] used a similar method to create a globabe obtained from receptance measurements from the whole sys-
pole-zero cancellatiofcancellation of a natural frequency with antem. The method can be applied to point and cross-receptance
antiresonangewhich left another, uncancelled, pole at the samgeros and thereby allows existing techniques to be applied to as-
frequency. Mottershead et 4lL0] showed how the nodes of nor-sign zeros by structural modification. In the cross-receptance case
mal modegand natural frequencigsould be assigned using measit js necessary to take four measurements at the frequency to
sured receptances. The modifications were determined from {ich a zero will be assigned. For point receptances only three
null space of a matrix containing the measured vibration data. measurements are needed. The inverse method elaborated in the
Until now inverse structural modification has not been app"%llowing sections differs completely from the well-known prob-
lem of assigning the poles and zeros of a linear control system
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MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- (Kailath [16]). It has the advantagever the dynamic vibration

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octobeabsorbe} that zeros can be assigned to both point and cross re-
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of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and g ate ?SJ € asj.?f ed point dt_aceptaTﬁe N OI'ZI tde. '|c|)d Cat?j
will be accepted until four months after final publication of the paper itself in th&an be applied at a different coordinate. e method Is illustrate
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Theory

We write the system stiffness, damping, and mass matri€es,

=KT=(or>0), C=C"=0 andM=MT>0, in the form

Frequency Responses of the Subsidiary System

The frequency response equation for the complete system can
be expressed as

Kog ki H(s)f(s)=x(s), s=io, (10)
P P e RN 1)
k. K c ' and in the case of a zero bf,(s) the force applied at coordinate
q pq . - - X .
g gives rise to zero displacement at coordinptéVe write Eq.
Cpq cg - (20) in full (and with rows and columns rearrangecs
el )
¢ Cpg Ppg M1 hp2 honT (4= X.=0
mpg M hig hu hi . %
Pq p c ;mnxn. (3) 1 1
My Mpg hag har  hy far={ % (11)
Kpq is the matrix formed fronK by deleting thepth row andqth : f: :
column,k, is thepgth term ofK, k; is thepth row of K (except Png Min n %n
for k,o) andk, is theqth column ofK (except fork,,). Similar ) .
Pq q pq
definitions apply to the terms in the partitioned damping and magge first row of Eq.(11) leads to the expression
matrices. ()
The matriceX ,,C,q,Mq define the subsidiary system f,
(KpgtSiCpqtSiM ) #i=0, i=I,...n, 4) :
. — . . f*=__(h lh 2h ,1,h +1...h I’]) fq—]_ y
where the eigenvalues determine the frequencies of the zeros of ¢ hpg PH P P g P f
the frequency responség,=h,,. The physical meaning of the ari
eigenvectorsy; , and the subsidiary frequency responses, f:
- . \ 'n )
Hpg(S) = (Kpg+SCpqts?Mpg) ™t s=iw, (5) 12)
is obscure but can be used to assign the zeros by structural madi- _ z
fication. Whenp=q the subsidiary system represents a point rgini (9 =A(S)(s), (13)
ceptance and whep+# g a cross receptance. where
f(s)=(fgfafo. . fqafqra-. AT, (14)
Eigenvectors of the Subsidiary System To)=(f1f,. . foifqer. .. f)T, (15)
We define the frequency respondéés), s=iw, of the com-
plete system by the relationship —+—(hpihpz .. hpq-1hp g1 - Npp)
A= hoq (16)

B(s)H(s)=Inxn, (6)

where

B(s)=(K+sC+s2M). (7)

When thegth column ofH(s;) is consideredat theith zero of the
frequency respons,), then

¢ hig Y (0)
haq :
: 0
Bp(S){ Np-1qp =1 1 —qth entry 8)
Pp+1q 0
\ h”q ) kOJ

whereB,(s;) e ™" is the same aB(s;) except that theth
column is omitted. When thgth row as well as th@th column is
taken out we find that

( w
hlq
hzq

hp-14
hp+1q

Bap(S) ©)

L Nng
o] thathq:(h;qh.2q .. .hp,.lthpﬂlq .. .hnq)T is an eiggnvector
of Byp(Si). A similar analysigwhenp+#q) shows thah,, is a left
eigenvector oB(s;). If p=q thenB,(s) is symmetric so that
its eigenvalues have nonpositive real parts.

792 | Vol. 68, SEPTEMBER 2001

lin—1)x(n-1)

fa‘(s) is the force at coordinatg that maintainsc,=0 across the
frequency range of the measured data from the complete system.
Equations(12) and(13) have a unique solution except at the fre-
quency of a zerd,o(s;) =0. In that casd(s;)=0 simultaneously
and there exists an infinity of solutions to E¢$2) and (13). In
practice this hardly ever arises and would only do so when by
coincidence a discrete frequency of the digital frequency response
data was at exactly the same frequency as a zetgpf

A similar analysis to the above, but based on the fdl’g:do
producexq=0, yields

— - h_qp(hqlhqz e hq,pflhq,erl s hqn)

= 17

l(n—1)x(n-1)

Now we combine Eqs(10) and(13) and premultiply byAT(s) to
obtain,

Hpq(8)T(s)=X(5), (18)
where
Hpg(S) =AT(S)H(S)A(s) e "D X1, (19)
and
X(s)=AT(s)x(s) e €™V, (20)
or
X(S)=(X1Xp - - - Xp—1Xps1 - - -Xn) s (21)

because of the constrairt=0.
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The frequency responéfnsgt is now defined to be the term from

Hpq(S), s=iw, at the coordinaté of the original systemand t
#p, ). hy will not necessarily lie on the diagonal bff,4(s), but
can in any case be shown, from E@9), to be given by

he=hye— (hpthg) /Mg - (22)

1
— —=hy—hZ/h,. (32)

by
The choice of modification coordinate has been considered by
previous authorg$Pomazal and Snydé#], Zhang and Lallement
[17], and Mottershead and Lallemdi]). In particular if theith

This subsidiary-system frequency response is used in the follofigenvector(or left eigenvectarhy(s;) (or hy(s;)) contain a zero

ing section to asign a zero im,, by a modification at coordinate

entry at coordinate then the zercs; will be unchanged by the

t. It should be noted that it is only necessary to measure fofjiedification. In order to reduce the magnitude of the modification

frequency responsés; , h,;, hq;, andh, in order to obtairhy, .
In the case whep=q Eg. (22) can be simplified to give

ﬁn=hn*h§t/hpp, (23)

b, to acceptable levels it is usual to choose @rresponding to
relatively a large entry im(s;) (andhg(s))).

Numerical Example

so that it is only necessary to measure three frequency responseshe six-degree-of-freedom system shown in Fig. 1 is consid-

Assignment of Zeros

ered where the value of all the stiffnesses and masses is unity.

Case 1—Undamped System. The “measured” cross recep-

In this section we review the method presented by Pomazal atacehys of the unmodified system is shown in Fig. 2 and it is

Snyder{4] and applied subsequently by Zhang and Lallenj&wt

required to assign a zero at 1.5 rad/s by a modification at coordi-

and Mottershead and Lallemefi]. The eigenvalue equation of nate 3. The eigenvalugpoles and zergof the system are given

the system with a modificatiob; at the fth coordinate can be
written as

(K+s,C+s’M+bsee)o,=0, r=1,...n,  (24)

where

hf:Srsz+SrCf+kf , (25)

s, and ¢, are therth eigenvalue and eigenvector of the modified

system andk; is the fth column ofl,.,,. When Eq.(24) is pre-
multiplied by H(s,)=(K+s,C+ s,zM)’1 it is found that

(I+beH(s))eref) ¢, =0, (26)

the fth term of which is given by
(1+efbiH(s)e)ef ¢, =0. 27)

Sinceef ¢, #0 it can be seen that
— —=hg(sp). (28)

by

For frequency responses, wheriw, the modifications can be
expressed as

Coihff(wr)

Ihee(wp)|

2 _
Ki— wymy=

(29)

and

sinZ h¢t(w,)
Ihes(wp)]

Clearly a passive modificatiotk; or m¢) can always be made
depending upon the sign of the right-hand side of @§). For a

wCt= (30)

in Table 1. A modification in the form of a grounded sprikt)
=0.4605 relocates the zeros to frequencies shown in Table 2 and
the receptance of the modified system, together with the
subsidiary-system receptance at the modification coordinate, is il-
lustrated in Fig. 3. It is clear that the poles of the subsidiary
system correspond to the zeroshgf. A pole-zero cancellation
occurs at 1 rad/s in the subsidiary system.

Case 2—Added Damping. Damping can be added to the sys-
tem by a further modification to reduce the “sharpness” of the
two poles on either side of the zero assigned in case 1. Of course
the damping does not have to be applied at the same coordinate as
the stiffness modificatiork*. Figure 4 shows the effect of a
grounded dashpot* =0.2, at coordinate 3. In Fig. 5 the same
dashpot is applied at coordinate 4. The effect of the two modifi-
cations on the 3rd and 4th poles is simil{#ne 2nd pole merges
with the zero at 1 rad/s when damping is addbdt when the
index of the damping coordinate is eithgror g (4 or 5 in this
particular examplethe zeros are unaffected and remain “sharp.”
This effect can be seen in Fig. 5. The damper may be applied
between two coordinates instead of being grounded. The case of a
connection between coordinates 2 and 3 is shown in Fig. 6 and
coordinates 4 and 5 in Fig. 7.

stable system having unmodified eigenvalues with nonpositive
real parts the assignment of a pole to the imaginary axis would
require a negative damping modification. Singh and Ra8J
considered the assignment of point-receptance zeros by passive
modifications. They established mutually exclusive conditions for
the assignment of a positive mass or stiffness-modification for a
constrained mass-spring system. Their paper contains the same
conclusion on the need to add negative damping for vibration
absorption in a damped system, but by a different argument.

In the case of assigning a zero Ik, by a modification at
coordinatet it is only necessary to repladg(S;) with hy(S;) in
Eq. (28), whereS, now denotes the zero to be assigiiedt a zero

of the unmodified system By combining Egs.(22) and (298),
whenp#q, we obtain

1
=hy— (hplhqt)/hpq )

b (31)

and whenp=q,

Journal of Applied Mechanics
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Fig. 1 Six-degree-of-freedom spring-mass system
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Amplitude ~ disp/force

Table 1 Poles and zeros of hys

0.5

1 1.5 2 25
Frequency — rad/s

Fig. 2 Undamped receptance hys

Case 3—Damped System. Proportional damping=0.05K

is applied and a modificatiob* =0.4646-i 0.2584 at coordinate

3 is determined for the assignment of a zero at 1.5 rad/s. It is
undesirable to make a negative-damping modification because it

Poles Zeros
(rad/9 (rad/9
0.684 1.000
0.911 1.000
1.286 1.414
1.640 2.000
1.970 0
2.117

would need to be applied actively and could destabilize the sys-
tem. Therefore a stiffness modificatidtt =0.4646 is applied
without damping. The receptances before and after the modifica-
tion are shown in Figs. 8 and 9. It is clear from Fig. 9 that the
stiffness modification results in a complex zero with an imaginary

part close to 1.5 rad/s.

Table 2 Zeros of h,g for the modified system

Experimental Example

A physical experiment was carried out using a steel beam in
free-free and clamped-fréeantilevej configurations. The length

Zeros
(rad/9

of the beam was 1.6 m with a rectangular cross section having the
nominal dimensions of 2 cm breadth by 1 cm depth. Modal tests

1.000
1.058
1.500
2.227

e}

were carried out on transverse vibrations in the flexible direction.

Free-Free Beam Experiments. In the first case a zero was
assigned at 500 rad/s to a point receptance at a location 1.2 m
(coordinate 18from the end of the beam where an added mass

was applied(coordinate L The point receptance of the unmodi-
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(@)

Amplitude — disp/force

1

Frequency — rad/s

15 2 2.5

(®)

Amplitude ~ disp/force
)

0.5

1

1.5 2 2.5
Frequency — rad/s

Fig. 3 (a) Undamped receptance with an assigned zero at 1.5rad /s; (b) undamped
receptance for the subsidiary system of the zeros of hus
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Fig. 4 Damped receptance—qgrounded dashpot at coordinate 3
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Fig. 5 Damped receptance—grounded dashpot at coordinate 4
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Fig. 6 Damped receptance-dashpot connected between coordinates 2 and 3
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Fig. 7 Damped receptance-dashpot connected between coordinates 4 and 5
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Fig. 8 Receptance hys of the damped system
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Fig. 9 Receptance of the damped system following modification by a grounded
spring at coordinate 3
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Fig. 10 Measured receptances hj3,3 from the free-free beam; (a) before, modifi-
cation, (b) after modification

fied system is shown in Fig. 18 where it is seen that the zerofourth-order polynomial was fitted to the measured frequency re-
closest to the desired 500 rad/s occurs at around 590 rad/sec. Bgenses over a range of frequencies from 400-550 rad/s which
clear from Eqs(22), (29), and(30) that measurements bf ; h; 13 resulted in the following estimates at 500 rad/s:

and h,3 13 at 500 rad/sec are needed in order to determine the

magnitude of the modification. Of course, the measurements con- hy ;=—1.547E-05 —2.297&-07i,
tained noise which was significant in the imaginary parts of the
receptances because of very small damping present in the beam. A h;15=—8.721E—-06 —7.286&— 08,
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Fig. 11 Measured receptances h;; 3 from the free-free beam; (a) before modifica-
tion, (b) after modification

his15= —4.097£—06 —5.038E 08 he 1= —4.848E 06 — 1.184F — 08,

A modification consisting of a mass of 1.2926 kg together with hiz15= —3.883E—06 —3.376E —08i.
a dashpot 0f~30.9432 Ns/m was determined for the assignment ) ——
of the zero to 500 rad/s. The calculated mass was then attached di'€ computed mass and damping modifications were 0.6981 kg
the end of the beam. No attempt was made to apply the negatffl —2:1528 Ns/m. A mass of 0.698 kg was applied and its at-
damper, so that the zero of the modified system would be expected
to lie very slightly away from the imaginary axis of the eigenvalue
plane. The point receptantg; ;3 following mass modification of
the system is shown in Fig. 16 where it is indeed clear that the
zero has been successfully relocated close to 500 rad/s. High reso-
lution of the frequency data achieved by “zooming” shows the
zero to be at 494 rad/s.

In a second study using the free-free configuration a zero of
h;7 13was assigned to 450 rad/s by means of a mass modification
at coordinate 1. Coordinate 17 was located at the other end of the
beam. The following measurements were obtained from smooth-
ened data at 450 rad/s:

hy ;=—2.565%&—-05 —4.014& - 07,
hy 3= —1.175E—-05 —1.370€&—07,
h;17~=1.700&—-05 +2.670%&—07,

hi7,7~3.973€—-06 +1.099&—-07,

The computed mass and damping modifications were 0.2004 kg
and —1.5260 Ns/m, and a physical mass modification of 0.2 kg
was applied. Figure 11 shows the cross receptdnge; before
and after application of the added mass. In the in{tiaimodified
condition the zero is at around 500 rad/sec. High-resolution fre-
guency data shows the zero at about 446 rad/s following modifi-
cation by the added mass.

Clamped-Free Beam Experiment. A zero of hy;,3was as-
signed to 500 rad/s by means of a mass modification at coordinate
9 (at midspain The following smoothened measurements were
obtained at 500 rad/s:

hg 9= —3.215€—-07 —1.230E-08i, Fig. 12 Beam with added mass
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hi313 from the clamped-free beam; (a) before

modification, (b) after modification

tachment to the beam is shown in Fig. 12. A small rotary inertia i
introduced by the physical application of the mass but is has
very small effect as shown in Fig. 13 where the zero, initially a
around 585 rad/s, is moved to 498 rad/¢tom high resolution
measurementdy the application of the added mass.

Conclusions

A method is proposed for the assignment of zeros in point and
cross receptances by passive stiffness, damping, and mass mo%

s[5] Mottershead, J. E., and Lallement, G., 1999, “Vibration Nodes, and the Can-
a cellation of Poles and Zeros by Unit-Rank Modifications to Structures,” J.
Sound Vib.,222, No. 5, pp. 833—-851.

t[G] Bucher, 1., and Braun, S., 1993, “The Structural Modification Inverse Prob-

lem: An Exact Solution,” Mech. Syst. Signal Process.No. 3, pp. 217-238.

[7] Bucher, 1., and Braun, S., 1997, “Left Eigenvectors: Extraction From Mea-
surements and Physical Interpretation,” ASME J. Appl. Me@&4, pp. 97—
105.

[8] Tsuei, Y. G., and Yee, E. K. L., 1989, “A Method for Modifying Dynamic

Properties of Undamped Mechanical Systems,” ASME J. Dyn. Syst., Meas.,

Control, 111, pp. 403—408.

Li, T., He, J., and Sek, M., 2001, “Local and Global Pole-Zero Cancellation of

fications. The frequency responses of the zeros eigenvalue prob-" mass-Spring Systems,” Mech. Syst. Signal Proceks. No. 1, pp. 121-127.
lem are determined from the frequency responses of the compldt@] Mottershead, J. E., Mares, C., and Friswell, M. 1., 2001, “An Inverse Method

system and used to determine the magnitude of the modification.

The method is demonstrated in simulated experiments to assi
the zeros of point and cross receptances in a physical beam
adding point masses.
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On Some Issues in Shakedown
G. Maier AnaIVSIS

Professor,
Department of Structural Engineering, Shakedown analysis, and its more classical special case of limit analysis, basically con-
Technical University (Politecnico), sists of “direct” (as distinct from time-stepping) methods apt to assess safety factors for
Piazza L. da Vinci, 32, variable repeated external actions and procedures which provide upper bounds on
1-20133 Milan, Italy history-dependent quantities. The issues reviewed and briefly discussed herein are: some
Fellow ASME recent engineering-oriented and cost-effective methods resting on Koiter’s kinematic theo-
rem and applied to periodic heterogeneous media; recent extensions (after the earlier
ones to dynamics and creep) to another area characterized by time derivatives, namely
poroplasticity of fluid-saturated porous media. Links with some classical or more consoli-
dated direct methods are pointed outDOI: 10.1115/1.1379368
1 Introduction sional software, and are still expensive and discouraging in a

The main lasting contributions of Warner Koiter to mechanicgumber. of engineering sit_uation_s, _especially for repea_ted paramet-
¢ studies often needed in preliminary structural design.

are his elastic instability theory which explained post-bucklin A ;
behavior and imperfectign sens)i/tivity, and tﬁe kinenf)atic theorerr£1J () Direct methods of shakedown analysis conceptually
concerning the “adaptation” or “shakedown” of elastic-plastic(t_ ough not h|stor|ca_ll)/represent geqerallzatlons of limit analy_-
solids under fluctuating external actions. The two preceding Kopi>: Which is rooted in the remote origin of structural mechanics
ter Lectures have been in various ways related to the former, m@fad €ngineering. This generalization, to a large extent, preserves
monumental and elaborate area of Koiter's contributions. This of& Main features of limit analysis, namely its simplicity, elegance,
is related to, and inspired by, the latter area of his work. and mathematical formalisrtoptimality properties, duality pat-
The inelastic behavior of structures subjected to repeated vaRh and its practical appeal of providing information on the car-
able loading, and possible consequent structural failures, have {9 capacity which are essential for a physical insight into the

tracted the attention of researchers in engineering mechanics sdHctural system and for its design.

as Hans Bleich and Ernst Melan, before plastic_ collapse o_f _dUCt_ileDespite the significant developments in the methodology and

structures(under loads assumed as monotonically amplified igympytational tools of time-stepping inelastic analysis occurred in

time) was given a definitive theor_etlcal and methodological basme last few decades, in view of the above motivatiéas-(c),

by ?V?Zd?\{' P[rahger,_Drucher, Hlll,kand other éo_un(::]erslg;gtru%-l ect methods for ultimate limit-state analysis can still be re-

Eﬁgi ep dat\asvt:acllct)ﬁe d i?l Fr:gnfggl(;]sg bvgolilesalapsr;en?gi dsm Iio(iater an<sj 2 Arded as competitive in a variety of engineering situations. Some
' y ' the original severe limitationsuch as the restrictions to asso-

ers were primarily aimed at establishing methods apt to Providtative perfect plasticity and to infinitesimal deformatipisve

t:)hee g:}'gcﬁhigxef:ﬁﬁe rr;glctlL[I)rI;erB useLi't?]lg ﬁﬁ!?gm:ﬂgltycg’}goge breen, and are further being, relaxed. Remarkable progresses have
yond - y : P b e%een made also in the area of those direct methods which are
alternating plasticity, and below which the structure “shak

Al . tended to provide bounds on history-dependent quantities. All

down,” in the sense that plastic yielding ceases after a waite n -
more precisely, the dissipated energy is bounded in)tifieese these dgvelopments have been fos_tere(_:i by, _an(_j frum‘ully_com-
methods of shakedown analysis, like the more classical onesbd)'f‘e(?I with, para_llt_el developments in discretization techr_nques
rigid-plastic limit analysiswith respect to plastic collapse under_(‘:""‘rt'cu_Iarly by flr_ute elements :?md bOP“_dafY elfam)aramd In
monotonic loading are frequently called “direct” or “simplified” |r_1equ_aI|ty-constra!ned mathemapcal optimization in vector spaces
methods, as distinct from the step-by-step procedures of ineladli€:; In mathematical programming ,
analysis along the whole time-history of loading. The theone_s and methods for direct analysis o_f structures under

Solution techniques marching in time have been for decadégpeated variable external actiotsr, as a special case, under
and to some extent still are, in the main stream of research f{Pnotonic loading, as dealt with by limit analysisind their ori-
computational mechanics of solids and structures. However, @i and growth, have been surveyed at diverse stages in various
favor of direct methods from a practical standpoint there afdblications after Koiter's 1960 esséjL]): e.g., in the “ad hoc”
meaningful circumstances like the following ones. textbooks by Kaig [2] and Kamenjarzlj3] and in a number of
eneral and specific publications on plasticity,g.,[4-6]). An

@ In many engineering cases, rgliablg information on variab[g,_o-date abundant, though incomplete, bibliography can be
external actions concern not their time-history, but merely rangg$,nd in a recent survey articlg7]).

within which they vary and are expected to show up again and

ag(ag)n.N merical solutions to practical nonlinear initial boundar considered and briefly discussed. This subdomain is believed to be
value lrjoblems of ili]elastic Etructural analvsis were r(;Jhibiti\ifepresentative of several current research topics in the area. Sec-
beforepthe advent of high-berformance cgm uters apnd rofé‘?qns3and4are devoted to brief discussions of shakedown theory
gn-p P ProteRg bounding techniques, respectively, generalized to poroplastic-
Comtributed by the Abplied Mechanics Division offE A AN Soc o ity; these generalizations exhibit both similar and distinct features
ontripute y the Applie echanics Division ol MERICAN IETY OF . . A
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- with respect to the gxtensmns Sta,rted long ago to dynamics,
CHANICS. Manuscript received and accepted by the ASME Applied Mechanics DRamely to other situations characterized by the presence and es-
vision, February 28, 2001. Editor: L. T. Wheeler. Discussion on the paper should gential role of time derivatives in the governing field equations.
addressed to the Editor, Professor Lewis T. Wheeler, Department of Mechani fni ; B i
Engineering, University of Houston, Houston, TX 77204-4792, and will be acceptfc?lghmmanly.' as_ a hommage to Warner Koiter, S.ome recgnt app.h
until four months after final publication of the paper itself in the ASMEJBNAL OF Catlo.ns of his klnematlc She}k.edown theorem W”.l be reviewed in
APPLIED MECHANICS. Section 2. In the writer’s opinion these three topics are at present

Here only a subdomain of the shakedown analysis area will be
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among those open to and worthy of further research, with emated by ahypeppolyhedronQ. For the loading conditions cor-
pected new results of use in structural and materials engineerip&ponding to all the vertices of thi&rﬁk (sayZikj ,k=1...0)
polyhedron, the relevant linear-elastic response in terms of local
2 Application of Koiter Theorem to Heterogeneous Pe- “microscopic_” stress fieldo?jk(xr) over the representative vo!ume
riodic Solids V are preliminarily computed by a conventional homogenization
i o ] o ] ~ technique and finite element procedupse being the Cartesian
The following citations (verbatim, to within slight notation coordinates
changes from the conspectus of plasticity theory W. T. Koiter (ji) The kinematic admissibility required by the definitidi in
published in 196@[1]) may provide a concise, still valuable basighe presence of texture periodicity, implies that the cumulative
to shakedowr(SD) analysis by a kinematic approach denotes |5stic strain fieldeo(x,) at the end of any cycle must be en-
time, V volume of the bodys, its unconstrained boundary ; s
“ L : . forced to satisfy the conditions
(I) “The concept of an admissible plastic strain rate cycle
éiij(T) is defined by its characteristic property that the increments b b 1
of the plastic strains in such a cycle for some time intefVal eijo(Xr) =Ejjo+ 2
constitute a kinematically admissible strain distribution.”
(II) “The body will not shakedown, i.e., it will fail ultimately x,eV, To(x,) periodic onS (2.3)
by cyclic plastic deformations, if any admissible plastic strain rate ) ] ) o
cycle £P,(7) and any external loads;(7),t;(7) within the pre- where subscrlpt 0 marks_ varlables_ belonglng to an _admrssrble
scribed”limit can be found for which plastic strain rate cyclébriefly “admissible cycle” AQ in the
sense specified by); AT; represents a displacement field over the

T representative volum¥ obeying periodicity conditions to be im-
jdr[fbiU?odV+f tiuf’ods]>f dff F(sPo)dV P ying p Y
T \Y S 0 \Y
2

Jd _ J _
—TUio+ —Tio|,
ax; 10 g% 0

posed on the boundar$g of V;AEf} are averagémacroscopig
) strains constant ovey.

(iii) The sufficient(ll) and necessarylll) inadaptation condi-
where F(&fo) is the plastic energy dissipation function in thejons combined, as usual in SD analysis, reduce the search for the
strain rate cycleéi‘}o(r)." SD limit or safety factors to the minimization of the dissipated

(1) “The structure will shakedown if a number>1 can be energy, sayD, cumulative in space and time along the admissible
found with the property that, for all admissible plastic strain rateycle, after the normalization which sets equal to 1 the external
cycles&fio(7) and all external load$;(7),tj(7) within the pre- work done by the loads because of the AC considered. This work
scribed limits, can be expressed in two forms:

T T T v
Uk ‘uP &P .
MLdT[ fvb.U.odV+ Lt.U.odS]<fodrva(s.,o)dV- D=Ldrfvaﬁ.sﬁodv= fv; ko () Aef(x,)dV=1.
(2.2) (2.4)

The upper bound of such numbgetis then obviously the factor
of safety with respect to shakedown.”

(IV) “An initial hope that the second shakedown theorem mig
facilitate shakedown analysis has not been confirmed by practi

Because of the virtual work principle, the former expression
(,[Where the average stress input is reflected by the linear elastic
h Lo
g%ness response to it;; , overV) equals the external works due to
PR e AC. The latter expression, where the time integral becomes a
applications”(p. 108 of[1]). o e ’ .
The above “second theorem” consists of statemeiiits and SUM: IS justified by a SD theorem which ensures that shakedown

(1), both based on the concept defined at pint Koiter had ©Ccurs under @hypen polyhedrical load domain if it does under
formulated this theorem in a not8]) communicated by C. B. the sequence of loads corresponding tovitgertices([17]) and,

Biezeno, his mentor, to the Dutch Royal Academy at the meetiqu%nce’ permits to materlallze any a(kjmlssmle cycle in the sense of
of Dec. 17, 1955, defining it as “a new theorem, complementaff) @S @ sequence of incrememis:f(x,), k=1...v. Consis-
to Melan's” and apt to “be combined with Melan’s in order totently with the adopted frnrte element_ model, Gauss integration
obtain upper and lower bounds for the allowable load variatioi§duces to a sum the space integrals in @c).
for shakedown.” A nontrivial historical scrutinffar beyond the (V) The minimization of the dissipated ener@y has to be
present purposgsnight trace its close roots in the work done b)performed over the set of all a(imlssmle cycles, namely with re-
Neal and Symonds at Brown University in the early 19%8s spect to: the displacement vectdrgoverning the modeled field
pointed out by a recent paper by Symondg$@l, and its remote Uio(X;), account taken of the periodicity d§ the overall strain
roots in the kinemati¢“unsafe,” “upper bound,” “dual”) limit tensorEi%; the cycle incrementﬂa%(xt‘),k=1 ...v, the new
theorem as a special case, and hence, to Galileo’s anticipation ahdex h running over the set of Gauss points in the whole volume
in his last “Dialogue.” V. The constraints to be enforced result from EGs3) and(2.4),
Ductile periodic systems such as perforated steel plates in pasuitably algebrized according to the space discretization adopted.
erplants and metal-matrix composites adopted in aerospace, ant/) The mathematical features of the minimization problem ar-
other, engineering situations, have been investigated from a limited at depend on the constitutive models locally attributed to the
and SD analysis standpoint in several publicatiomserred to, (individually homogeneoysonstituents in the representative vol-
e.g., in[7]). Noteworthy applications and extensions of Koiteume V. If Mises-Huber associative perfect plasticity is assumed
theorems have been studigd.g., in [9,10]) for temperature- for all the phases, then the global dissipated energy turns out to be
dependent material models in view of high temperature industrialconvex function, nondifferentiab{&nonsmooth”) in the origin;
situations, which have fostered also direct methods for the crethy plastic incompressibilityentailed by the normality in flow
range, e.g.[11,12. Here focus is on application of the aboverules is expressed by a linear equality constraints in every Gauss
statementsgl)—(Ill), by a procedure which, in the writer’s experi-point h and for all steps in the admissible cycle.

ence([13-16), did recently confirm the “initial hope(IV) ex- (vi) The mathematical programming problem formulated by the
pressed by W. Koiter 40 years ago. This particular proceduredbove path, can be numerically solved by a variety of algorithms
briefly outlined below. now available as commercial software. The one “ad hoc” origi-

(i) In the space of averag@r “macroscopic’) stressesj;, nated by Y. G. Zhan§18] and adopted ifi13—15 rests on penal-
which are regarded as “loads,” the given regiéhwhere they ization for plastic incompressibility and on Lagrangian multipliers
fluctuate, and which represents the “loading domain,” is approxfer the other constraints. This algorithm solves the nonlin-
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ear stationarity equations for the Lagrangian by an iterative prim a “soft” average way. The pros are: compatibility with tradi-
cedure, at each step of which linear equations are solved by ustitghal simple FE methods centered on displacement modeling; no
results from the preceding iteration and user-available factors f@crease in the optimization variabléntrary to the implications
fixing denominators proportional to the current local dissipationef the Lagrange multiplier approachThe main contra of the pen-
The above outlined procedure can provide various kinds gfty method is the empiricism underlying the choice of the penalty
technical information, some examples of which are shown in Figgctors or factorf (a single factor for an overall violation norm
1 and 2, for a perforated steel plate interpreted as a plane stiggRed out to be suitable, in the writer’'s experiendes expected
system and for a ductile composite, respectively, with Misegyy a5 visualized in Fig. 3, a very higHeads to either locking
Huber perfectly plastic materialg the latter case the yield Stress,anifestations or numerical instability, a very Idwo kinematic

H m f_ m i 1 ' X . .
being o' and 0q=8.70¢', for matrix and fibers, respectively (g|axation and consequent conservative but erroneous SD limits

Although it rests on Koiter’s classical statemefit and(lll), this 13)). The range of penalty factors leading to reasonably accurate
direct method exhibits various aspegminted out beloywwhich %?é ). d P 4 g Y

. utions can be determined only empirically, by comparative nu-
appear to be wort_h hoting at t_he present dgvelopment stage of rical tests, and depends primarily on the tackled problem and
analysis and are in parts distinct from their counterparts in othgr '

kinematic approaches to similar kinds of engineering proble e adopted ”?ate”a' modé.g., for the same Prandtl’s '“def.“a'
(e.g., see[19-22). tion problem, it turned out to cover various orders of magnitude

(@) The heterogeneity periodicity, dealt with in the spirit ofw.'th M'SFT‘S r’nodels, much [ess with Drugker-Pragers and If’ande-
homogenization theory, is accounted for both in the preliminan?e”'f'ew'czs models for frictional materiglsFortunately for in-
linear elastic computations (hgﬁk and in the search for the SD ustrial appllc_:atlons, the suitable range can be estlmateql once for
limit s. It plays a twofold role: first, in terms of the boundaryaII for eaph k'm,j of problem(;e.g.., hexagonal repn.esent.atlv.e vol-
conditions on the representative volume; second, througlidg. Ume of fiber-reinforced compositefl4,15) defective pipelines
at the end of the admissible cycles according to definition (_[1_3])), since it is fairly insensitive to details such as geometry and
Computational savings are obviously implied by the formulatiofinite element mesh. ) _
of the SD analysis on thém”'“mum) representative V0|ume’ (C) The iterative solution teChanue above mentioned at Stage
singled out on a statistical basis or in view of the strict microstrudvi) involves (at least two further parameters to be assumed on
tural periodicity assumed here. empirical basis(one for selecting at each iteration the yielding

(b) The penalty approach to the enforcement of the plastic ifsauss points, the other for replacing a vanishing denominator in
compressibility constrainat each stefx of any admissible cyc)e the nonyielding poings After tuning the procedure also as for
can be regarded primarily as a provision apt to avoid or attenuakese tolerances, fast convergence was observed, though not theo-
“locking” manifestations. From this standpoint, it represents aretically corroborated by proof.
alternative to reduced integration, and to mixed finite element(d) The validation of the particular kinematic method consisting
modeling(see, e.g.[16]) and, in particular, to multifield modeling of phased(i)—(vi) has been achieved by comparisons with earlier
in Prager’s generalized variables considered herein in Sectionr@sults by diverse approachésg.,[23—25) and with computa-
Locking due to the combination of constitutive and modeling Kitions carried out step by step by means of a commercial nonlinear
nematic constraints, and its unconservative consequences, Wi{fe element code, with reference to defective pipelines
met early in computational limit analysis, but, clearly, are exr13 26), and to heterogeneous solids like perforated plane-stress

pected to occur in shakedown analysis as well. Penalization Gaites and fiber-reinforced compositese]14,27] and illustrative
merely be interpreted as a way to enforce constitutive k'nemat'gﬁamples of Figs. 193

(e) Computing costs of the direct kinematic method, with re-
spect to those of time-marching inelastic analysis, were found to
be reduced by a small fact¢say 2 or 3 for the special case of

Z, limit analysis, but by one or two orders of magnitude for SD
analysis, in view of the trial-and-error strategy required to evalu-
ate SD limits by step-by-step computations. The above particular
kinematic SD analysis method was ascertained to be cost-effective
in engineering practice, but not necessarily superior to other re-
cently proposed direct methods. In particular, e.g., the direct itera-
tive method consisting of repeated linear analyses with suitable
modified elastic modulisee, e.g.[28,29) exhibits the theoretical
appeal of a convergence proof and the practical advantage of us-
ing commercial general-purpose computer codes.

As a conclusion of this section, it can probably be said that W.
Koiter's hope expressed iiV) is confirmed nowadays, at least in
view of the direct method outlined in what precedes, but probably
also in view of others, among the various methods devised in the
last decade.

The spreading applications of SD concepts to heterogeneous
solids and in particular to periodic composites as seen above,
might be beneficial to other areas of materials mechanics, where
multiscale approaches have become fashionable and promising,
“in primis” to fatigue criteria.

Daniel Drucker wrote in 1963[30]): “When applied to the
) ) microstructure there is a hope that the concepts of endurance limit
Fig. 1 ~Shakedown analysis of a perforated plate: (&) represen- 454 shakedown are related, and that fatigue failure can be related

tative volume and finite element mesh; (b) shakedown limit ‘e S . .
locus (solid line ) in the average stress plane for rectangular to energy dissipated in idealized material when shakedown does
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parison, the plastic collapse locus in dashed lines (o, being  seem to confirm this far-sighted thought. In fact, connections have
the material yield stress ) been established between fatigue crack advancement at the mac-
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Fig. 2 Shakedown analysis of a metal-matrix composite subjected to uniaxial

average stress X (a) representative volume;
(solid line SDA ) versus plastic collapse

nism for #=30 deg; (c) shakedown limit

limit evaluated by the present kinematic method
[71] (dotted line ) (o being the matrix yield stress ); (d)

the static method in

(b) incremental collapse mecha-

(dashed line LA ) and by

convergence on the shakedown limit in the former procedure with penalty

factor 10 ¢

roscopic level on one side and lack of shakedown at the micrtwhy”? The microscopic and the macroscopic views are mutually

scopic level on the other, through appropriate microstructurdépendent and should interact at all leve(g30]).

modeling of polycrystal metals.
Material ratchetting, in particular of metals under severe cyclic

thermal loading, is also being successfully interpreted in the light

of shakedown theory at the microsc#l/82,33). This can be re- 3
garded as another recent case of the scale interaction advocated

Shakedown Analysis in Poroplasticity

about 40 years ago in a further, more general sentence by Drucke/After almost three decades since their extension from quasi-
“Phenomenological theory never really answers a questigiatic to dynamic plasticity, in the last few years direct methods

llell /1lgll- 102

Fig. 3
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Influence of the penalty factor on the plastic collapse

limit (dashed line ) and on the violation (measured by a norm of

the plastic volumetric strain field

(solid line )

) of the normality constraint
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have been studied in another context where field equations in-
volve time derivatives, namely in the mechanics of deformable
porous media saturated by a viscous liquid, the filtration motion of
which interacts with the deformations of the solid skeleton.

The classical and lasting theoretical foundations of coupled
(fluid-solid) problems are represented by Biot's linear poroelastic-
ity theory shaped mainly in the 1940s. Almost two decades earlier
pioneering works due to Terzaghi, Fillunger, and others were mo-
tivated by geotechnical and dam engineering problems. At
present, motivations for further developments in this area arise
from a number of diverse technologies such as slope stability in
geotechnical engineering; subsidence control in environmental en-
gineering; biomechanics of bones and soft tissues; exploitation of
oil and gas deposits; design and rehabilitation of new and existing
earth dams; and, in the presence of diffused cracks, also masonry
and concrete danishe illustrative examples of Figs. 4—6 concern
two simplified models of gravity damsComprehensive treat-
ments of the accumulated knowledge concerning fluid-saturated
(fully or partially) linear, and nonlinear inelastic porous media can
be found, e.qg., ih34], together with time-marching procedures for
numerical solutions of poroelastic and poroplastic initial boundary
value problems.

Direct methods of poroplastic analysis have been developed in
the last few yearg[35—37)), so far under the restrictive hypoth-
eses which followia) linear kinematics{b) quasi-static regime;

Transactions of the ASME
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Fig. 4 Incremental collapse mechanism with relevant Mises-
equivalent plastic strain rate field (a) for an idealized gravity
dam interpreted as a poroplastic system under periodic live
load (ba)

(c) full saturation of solid skeleton by a single viscous liquidj
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Fig. 6 Upper bounds on the residual displacement at the top
of the idealized poroplastic dam model of Fig. 4, as a function
of the mesh refinement (point A corresponds to the finite ele-
ment mesh shown in Fig. 4 )

of the solid skeleton, conservation of the fluid mass, and Darcy’s
filtration law. These field equations involve the variation of fluid
content{ and the fluxq; (defined as accumulated liquid volume
per unit bulk volume and, respectively, per unit time and unit
crossed area orthogonal to axig. Darcy law relates the flux to
the gradient of pressurp through the permeability tensd;
=k;i . The external actions include: data on the boun@given
displacement onS, and traction onS;, with SUS,=S and
SNS,={J}; given pressure onS, and flux on S, with
SqUS,=S and S;NS,={J}); bulk body forces; and specific
weight of the fluid(per unit liquid volume. The initial conditions
can merely concern the pressure field over the volymef the
considered system.

The constitutive law at the macroscopic, phenomenological
level, to be combined with the preceding field equations, relates
static quantitiesr;; andp to their work-conjugate kinematic ones
gj; and{. Like in elastoplasticity, each one of the latter variables
is assumed to be the sum of a reversible, poroelastic addend and

permeability constant in time; arig) material stability in Drucker &N irréversible, poroplastic addefwarked by superscripesand

sense, implying associativity of flow rules.
The field equations express equilibrium of “total” stressg

p, respectively. The poroelastic addends are linearly related to the
static variables according to Biot's model, namely; (%

(total in the sense that they concern the two-phase, “bulk” $plid=C{o7; ,p}, C being a(positive-definite, linear, symmetjialge-

geometric compatibility between straiag and displacements;
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Fig. 5 Self-adaptive limit analysis governed by a normalized

measure of the plastic strain rate density of the collapse
mechanism in piecewise-linearized plasticity

Journal of Applied Mechanics

braic operator which, for isotropic materials, is governed by four
material parameters.

The irreversible(“plastic” ) addends‘sipj and ¢P are governed
by nonholonomic relationships in rates. Like in structural elasto-
plasticity, see, e.g[38-40, in order to simplify theoretical and
numerical developments for SD analysis, the poroplastic model
can be given a “piecewise linear{(PWL) approximation as
follows:

@a=N7 0 +NPP-Y,<0, Y,=Yl+H,\, (3.1)

o

el =NT A\ P=NPA, (3.2)

ijata>
Ne=0, ¢A=0, (a,8=1...n) 33)

where the quantities denoted by Y°, andH are constants and
Y? represents thgoositive initial “yield limit” of the ath mode.
Interpreted in the{oy; ,p} and {sipj ,{P} spaces superposed, the
poroelastic domain is the convéxypel polyhedron consisting of
the intersection of then, half-spacesp,=<0. Each yield plane
¢,=0 (a=1...ny) is defined by its unit normgIN;;NP}, and
by its distance from the origin, namely by the current yield limit
Y, . Generally, thenth yield plane translates at yielding of mode
B=1...n, (forwards or backwards, depending on the sign of
H,z); its possible contribution to plastic “deformation§&f; , (P}

is directed as théfixed) gradient{N;; ,NP} , of the relevant yield
function and plastic potentiap,, .

The symmetry of the “hardening matri¥i,,; is entailed by the
adoption of a “locked-in, free energy” potential for the internal
variables, which in the above PWL models identify with the plas-
tic multipliers A,. However, a nonsymmetric hardening matrix
may be directly introduced in the definition af,, (Eq. (1a)).
Like in plasticity ([39]), matrix H,z is apt to represent diverse
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types of hardeningkinematic, isotropic and mixed, with or with- s= max {u}, subject to:

out saturatiol its positive semi-definiteness, together with nor- P
mality, implies material stability in Drucker’s sense. T _ T
In the present PWL context, under the practically weak assump- [N,o5(7)+NJpS(7) ]+ NyoS< Yo+ HA,
tion that Yg andV are bounded, the energy characterization of CToS=0 Vr=r*. (3.4)

shakedown is readily seen to be provided by the boundedness in

time of the plastic multipliers everywhere M. On this basis  Here boldface symbols represent matrices and vectors concern-

(restricted for convenience, but endowed with all essential fetg the whole finite element model, account taken of the boundary

tures of more general approachete two statements which fol- conditions; the vectors, p, A, andY, govern the space distribu-

low can be prover([35,36). They represent a generalization tdion of stress, pressure, plastic multipliers, and original yield lim-

poroplasticity of Melan’s static SD theorems, which in turn can béS. respectively; superscripisandS denote poroplastic response

regarded as generalizations of the static theorems of limit analy©8d self-equilibrium, respectively, the latter being expressed by
(I) Shakedown does occur if internal variablesPWL models ~ the equality constraints in probler8.4). The inequality con-

N, @=1...n,) and a steady-state poroelastic response to ficglraints reflect the yield condition@.1) throughout the model.

. . . . _The load factoru concerns the fluctuating live loads, being un-
tious imposed constant stralraﬂ (specifically, consequent con derstood that possible “dead” external actions constant in time,

stant self-stresses;)) exist such that the superposition of it and obgier 4 transient supposed to be immaterial, merely contribute a
the fictitious poroelastic responsémarked by superscript time-constant addend to the vectsg of the generalized original
E:oﬁ ,pF) to the external actions, after a tim&, strictly satisfies yield limits.
the constitutive yield inequalities. Let the “envelope vectorM={...M,...}" be defined as
(1) If the poroplastic system shakes down in the sense thfallows, indexa running over the set of al, yield modes in the
dissipative inelastic phenomena cease after a tifnethen there whole discrete model:
are internal variables and time-independent self-stresses such that o T T E
the superposition of the latter on the poroelastic respésisger- My (7%)= ma}{(N )20 (7)+(NP) pE(7)}. (3.5)
script E) after a time7r* satisfies the yield inequalitietrictly =
with arbitrarily slight increases of the yield limjts If a time 7 is fixed and no longer considered an optimization
These statements are formally similar to those which extend tariable, vectoM defined by Eq.(3.5 becomes constant; then
hardeningle.g.,[41-45) Ceradini’s generalization of the “static” the optimization problem3.4) reduces to linear programming
Melan’s theorems to dynamics in classical perfect plastici}-P) and, clearly, provides a lower bound on the safety fastor
([46]). A substantial similarity might be noted between the kine- ok . )
matic poroplastic SD theoren{glual to | and Il, sed36]), not s=s*(7%)= max{u}, subject to:
discussed herein, and the generalizations to dynamics of Koiter’s w0tk
theoremgSection 2 established i147,48 for traditional plastic- uM(7)+NloS<Yo+HA, CTo®=0. (3.6)
ity and further developed, e.g., [41,45,49,5Q In fact, the fluid
turns out to influence the behavior of the system only through t
fictitious poroelastic response to the variable lodis inertia
and damping in dynamigsUnder the given loading history, cap-
tured in that fictitious response, SD arises from the capacity A) A theoretically and practically crucial question on E8.6)
residual stresses, ger)erated by inelastic strains in the skeleton, ow to choose t)klle ins?anf sucf): that theqLP problem 3ields
eventually become time-constant self-stresses apt to stop tﬁe

- T . . D limit(i.e.,s* =s). Thi il hi f
yielding processes; the time-independence of imposed swﬁlnsthg illowgéllznﬁs o?foadiﬁgpﬁ{squ?iisc.an easily be achieved for

and of irreversible changes in fluid contefitprevents any influ- (i) periodic external actions: after a transient which depends on
ence of them on the fluid motioiprovided the permeability is not the initial conditions and becomes negligible after a few periods,
affected by themn the fictitious poroelastic response becomes perigai@ can be
Like for Koiter's theorems of Section 2, the weak assumptiogomputed efficiently in closed forrf{36])). As for SD the tran-
(Lyapounov stability that infinitesimal perturbations of yield sient is immaterial and, therefore, the periodic poroelastic re-
limits have consequences of the same order on the SD limiponse above can be used in B85 with 7* =0 and leads to
legitimates the transition from strict to weak inequalities in thex —s in Eq. (3.6).
sufficient SD condition and the Consequent identification of th(ﬁ) Intermittent actions’ Wh|c|(]||ke earthquakesmateriaﬁze in a
with the necessary condition in the operative formulations of SExt of known loading histories with relatively brief duration, sepa-
analysis. rated by the same steady-stdlike the initial one under dead
Space discretization of the system is a natural first step towatds only. If the poroelastic responses to all those histories in
numerical solutions. Among various approaches available nowdaquence are employed in E®.5), M, computed forr* =0
computational mechanics, the one used in the first implementatigecomes independent from the sequential order and, hence, so
of SD analysis in poroplasticity was mixed finite element modebecomess*, which coincides withs. In elastic-plastic dynamics
ing “in Prager’s generalized variablegl.e., such that in each pair intermittent excitations have been studied by Polizzotto and co-
of work-conjugate fields, the interpolation are related to eachorkers, with the denomination of “unrestricted” S(p44,45).
other in such a way that the scalar product is preserved with its(B) Hardening material models involve internal variables in the
possible energy meaningrhis approach, resting on its variationalSD criteria and, hence, in the search for the safety factor by math-
basis expounded if61], exhibits the combined appeals of avoidematical optimization. In the PWL formulatioi3.6), the internal
ing locking (see Section Rand of conferring to the discretized variables coincide with the., and these govern through Eg.
description the essential featursymmetry and sign-definiteness(3.2a) the plastic strains, which in turn can be conceived as the
of key operatorsof the continuum formulations. The latter prop-physical sources of self-stresses. Therefore,o® can be ex-
erty legitimates theoretical developments in the space-discr@iessed as linear consequences of vektar®=ZN_ A\, denoting
context. by Z the (symmetric, negative semi-definjténfluence matrix.
After the finite element discretization, the search for the SBElowever, the effort of computing and the possible algorithmic
limits based on the static theorertig and (1) can be formulated difficulties caused by numerical noise in its many zero eigenval-
as follows([35,36): ues, may more than balance the gains due to the reduction of

heThe following remarks may elucidate potentialities and limita-
tions of the above formulated static SD analysis in poroplasticity,
and are also intended to survey some peculiar features of its clas-
BiFaI counterpart in plasticity, as a special case of it.
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variables. An obvious alternative rests on expressifign terms  live load (additional to self-weight and hydrostatic pressuep-

of redundants through the equilibrium equation$3ré). Both the resented by uniform pressure on the upstream wall. Under fluctu-
above variable reductions in large-size LP problems seem to @ting live load(Fig. 4(b)-a) with period of three days, the safety
hibit an algorithm-dependent, often balanced set of pros and cofagtor iss=2.57. The incremental collapse mechani@hbtained

at least in perfect plasticityi.e., for H=0). As well known and from the solution of the dual LAs visualized in Fig. 42). Under
expected in all contexts of SD analysis, hardening may strongiyonotonically increasing live loaFig. 4b)-B) up to the same

influence both the SD limit and the collapse mechani&ny., overtopping level(of 25 m), the safety factor turns out to be
kinematic hardening without saturation prevents ratchetting agd- 5 47.

entails alternating plasticity A number of results achieved on~ paomark (E) is illustrated by Fig. 5 where the simple self-

nonlinear hardening in plasticigee, e.g(41-43,53) can easily &qlaptivity mentioned ifE) with “longest side” remeshing strat-

be transferred to poroplasticity. The same can be said for rec : ) S )
results concerning damagfs3—56 and crackg57,58). €gy, is applied to the limit analysigas a special case of SD analy-

(C) The solid skeleton is a frictional material in most engineed Of another dam model. The four meshes shown tit8¢e)—
ing situations amenable to poroplasticity. This implies that tH&)), are correlated in the graph to the growth of the number of
yield functions ¢, depend on the first stress invariant and ar@Ptimization variabless®, in the solution of problen{3.6) with
distinct from the plastic potential&say ¢,) primarily to avoid H=0, and to the improvemeritiecreaseof the critical overtop-
excessive dilatancy. The latter consequence, nonassociativity, 849 height, i.e., of the safety factor. , ,
easily be allowed for PWL approximations in poroplasti¢[§6]) The abo_ve brief review of recent developments in poroplastic
like in plasticity, see, e.9[38,42,49,59 In fact, two “fictitious SD analysis has_ given rise to remarl§s mostly applicable to the
associative materials” can be generatddy ignoring the devia- whole area of dlr_ect methods. Peculiar o_f this new subarea of
tion from normality andii) by assuming as poroelastic deformaPoroplasticity are its needs for reseafdow in progressat least
tion the maximum polyhedron contained in the actual domain ai the following issues: relaxation of the restrictive assumptions
having as outward normals the gradients of the plastic potenti%?gf_u” saturation and of constant permeability and provisions for
The linear programs, formulated like in E@.6) but on the basis imited ductility of the solid skeleton. As for the last requirement
of model (i) or (i), lead to(unfortunately often loogeupper and (Which of course arises for direct methods in plasticity as wall
lower bound ors, respectively. promising approach is a combination of limit and deformation

(D) External actions interpreted as growing slowly and mongLolonomic analysis: with constitutive piecewise linearization,
tonically up to values constant in time, after the extinction of §/€N I Lhel prgsence of softenifige., fgr any maTrle ap): this
transient regime, give rise to a time-independent poroelastic stf8Proach ‘eads fo optimization under complementarity con-
If the relevant(constant in timg stress and pressure vectors ar traints, a_fashlonable topic of current research in mathematical
introduced in Eq(3.5), problem(3.6) with H=0 (perfect plastic- programming.
ity) yields the safety factos with respect to plastic collapse, i.e.,
it defines the carrying capacity of the modeled poroplastic systebn Upper Bounds

asymptotically in time. In other terms, the present SD analysis shakedown analysis may be nonconservative when some of the
specializes to limit analysis by a static approach generalized jializations on which it rests are violated. Let us consider in
PWL poroplas_ticity. A remarkable feature of limit analysis in thfbarticular the following hypotheseéa) “small” deformation and
above sense is that the relevant safety factor may turn out to Q&viceability within SD rangesb) unlimited ductility; and(c) in
less than the safety factor with respect to live loads, fluctuatipgyroplasticity, linear diffusion equation, i.e., permeability constant
between zero and the same peak value, an impossible occurrgacgme. Remedies to the above possible unconservativeness, as a
in plasticity. In other terms, the motion of the fluid in it mayconsequence of invalidation of some basic assumption, may be
increase the carrying capacity of a poroplastic system; moreovgund still in the area of direct methods, precisely in methods apt
the growth of its frequency may reduce the SD limit in othefo provide upper bounds on the post-SD values of meaningful
circumstanceg[36]). quantities which depend on the whole history of the inelastic sys-
(E) From the computational standpoint direct methods haem. Upper bounds on meaningful residual displacements, plastic
been recently enriched with various valuable contributions, e.gtrains and volumetric plastic strains in representative crucial
see([21,22,60) and references ifi7]. In the present context, first points, if they turn out to be lower than critical thresholds, guar-
it is worth noting that the generation of PWL constitutive lawsintee that the above hypothegas(b) (c), respectively, are actu-
entails a computing cost which is generally more than compealy acceptable in the engineering situation considered; otherwise
sated by the savings due to the transition from nonlinear to lineey may give guidelines for suitable adjusted reformulations and
programming. Problen.4) may substantially be reduced in siz€jterated solutions of the SD analysis problem, or they may induce
by tentatively ignoring every yield mode for which Y,—M, recourse to costly time-stepping analyses.
exceeds a pre-assigned tolerafiae, whose maximum projection A variety of bounding techniques in the above sense were es-
M, is sufficiently far from the relevant yield plane, so that this isablished since the early 1970s, especially in dynamics and in
unlikely to be active. The neglected yield inequalities which turnviscoplasticity and creep, e.d[11,12,64-70). In fact, the time-
out to be violated by the stresses resulting from the first triglependence of the system reduces the applicability of SD concept
solution are reconsidered for another solution, see, [€4]., Self- (e.g., SD in the present sense clearly occurs under impact loads, as
adaptivity as an effective source of computational economy waswould do with unrealistic isotropic hardening without satura-
only recently investigated in the area of direct meth@=, e.g., tion). Beyond the present purposes would be a survey of bounds,
[60,62,63). In our experience, satisfactory results are achieved from those based on “dummy loads” to their unifying generaliza-
two-dimensional cases by the simple technique of mesh refirtens using “perturbation parameter¢.qg.,[65]), to those emerg-
ment, specifically by bisection of the longest side of trianguldng from “ad hoc” energy considerations, and, finally, to the bi-
finite elements governed by a suitable norm of plastic strains dateral ones like if66].
longing to the collapse mechanism provided by the solution of theln the framework of the space discretization and constitutive
dual to problem(3.6). piecewise linearization adopted in Section 3 for poroplastic SD
The illustrative example of Fig. 4 corroborates remdk The analysis, the actual post-shakedown value of a meaningful dis-
drastically idealized plane-strain dam model shown in Fig) & placement or plastic strain turns out to be a linear function of the
formulated with material data, boundary conditions and mixed Riost-shakedown generalized plastic multiplier veetor
discretization adopted if86], in particular: Drucker-Prager asso- In this context several upper bounds on these quantities have
ciative poroplasticity in “effective” stresses; PWL-approximationrecently been established using the condensation of variables
by 8 yield planes; impervious foundation; 25 m “overtopping’mentioned atB) in Section 3. After the SD analysis by LP leading
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On the Existence of a Solution for a resentation, for example, Sherm@h]|, whereas the second set

encompasses studies of differential fashion, for instance, Samo-

Solid Circular Plate Bilaterally durov and Tikhomirov[2].

i In this paper a thin, solid circular plate, bilaterally supported
Supported Along Two AntIpOdaI along two antipodal periphery arcs and deflected by a transverse
Boundary Arcs and Loaded by a central force is considere@ee Fig. 1 Within the framework of

the purely flexural plate theory, it is demonstrated that this prob-
Central Transverse Concentrated Force lem admits no solution exhibiting certain types of endpoint
algebraic/logarithmic singularities, a results which justifies this
return to a classical problem. This negative conclusion is parallel
G. _Mon_egat_o . . . to that obtained by Grigolyuk and Tolkach¢8], p. 381, with
Politecnico di Torino, Corso Duca degli Abruzzi 24, regard to an infinite plate resting on a line support.

10129 Torino, ltaly

A. Strozzi 2 Formulation of the Integral Equation for the Plate
Faculty of Engineering, Modena and Reggio Emilia Within the framework of the classical, purely flexural theory of
University, Via Vignolese 905, 41100 Modena, Italy elasticity for plates, the expression for the edge defleatipf) in

a thin, solid, circular plate loaded by a transverse, concentrated,
central forceP, and by two antipodal border forc€32 equilibrat-

ing the central load i
A purely flexural mechanical analysis is presented for a thin,g ¥l

solid, circular plate, deflected by a central transverse concen-  48wD(3+v)(1—v?)
trated force, and bilaterally supported along two antipodal pe¥ Pr2
riphery arcs, the remaining part of the boundary being free. This ©

problem is modeled in terms of a singular integral equation of the .

Prandtl type, which possesses a unique solution expressed in =48(1+v)(In|2 sin6|—coséIn
terms of a reaction force containing a factor exhibiting square

root endpoint singularities. This solution is then shown not to +12(1+ )’ [ 7(6—sin0) — 6°]— 2% (1+ v)?+3(1—»)®
respect the requested boundary constraints. It is therefore con-
cluded that, within the framework of the purely flexural plate
theory, the title problem cannot admit the weightet dolution

here examined. It cannot, however, be excluded that a solution to
the title problem exists, which possesses stronger endpoint sinni-
larities than those examined in this paper, or is of a more gener
form than the one considered her¢DOI: 10.1115/1.1379037

; 0
anz

O<f<mw (2.1)

1 Introduction

Circular plates axisymmetrically loaded but constrained nona
symmetrically have repeatedly attracted the attention of the |
searchers. The analytical-numerical papers addressing such p|
lems may be classified in two main categories, where the fil
group comprises analytical solutions based upon an integral re

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF i i X i .
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OFAPPLIEDME-  Fig- 1 A thin, solid, circular plate, bilaterally supported along
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 2dwo antipodal periphery arcs and deflected by a transverse
1999: final revision, Dec. 18, 2000. Associate Editor: R. C. Benson. central force
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P/Z P/2 fﬂx;F(w)derMJﬁ F(w)dw

_Jtan0—w) 2
rLSl B (1+v) ( ™
=, P| 6+ > (2.5)

which is a Fredholm integral equation of the first kind with
Hilbert-type kernel(Mikhlin [5]).

The integral Eq.(2.5 has to be coupled with an additional
condition, expressing the fact that each plate support sustains half
the central load® whose intensity is considered as known,

+a P
f F(w)rodw=§. (2.6)
Concerning the derivatives @f with respect tod employed in
(2.5), it is noted that the integral representation of the first deriva-
tive of w(6) is well defined when, for exampl€& e L}(— a,a),
or even wherfF is a Dirac delta functionf(w—wg). The corre-
sponding formal representation of the third derivative still holds,
although the derivative itself must be interpreted in a proper weak
Fig. 2 The deflection w(#@) in a circular plate loaded by a sense, whelr Ll(—a,a). This derivative is also defined when
transverse, concentrated, central force P, and by two antipodal F(w)=8(w*a), since in this case it belongs to a weightetl
border forces  P/2 space. Therefore, wheR(w) is aL! function, eventually plus a
linear combination o6(w = «), nothing is lost by considering the
Eq. (2.5.
) ) It is observed that a reaction force which solves the title prob-
whereP represents the intensity of the central loBddenotes the lem is also a solution to the new E@S) On the other side, Eq
flexural rigidity of the platey indicates the Poisson’s ratio, the  (2.5) models a problem which is more general than that expressed

plate outer radius, and the angular coordinate, whose originin the title, since the first of Eqg2.4) implies thatw be of the
coincides with the point of application of one of the two boundarjorm

loads (Fig. 2. The boundary deflectiom(6) is expressed with

respect to the plate center. In the following, E2.1) is symbol- w(6)=C;+C;cosb 2.7)
ized as where, due to the problem symmetry, only the deflection terms
w(6)=PK(6). 2.2) which are symmetrical with respect tbhave been considered in

(2.7). Equation(2.7) shows that a solution to the integral Eg.5)

In a solid circular plate of radius,, loaded by the same dis- coupled with conditior(2.6) produces a plate deflection which is
tributed forceF applied along two antipodal boundary arcs ofhe sum of a constant and of a cosinusoidal term. A constant
angular width 2o and by an equilibrating central forde, the deflection is consistent with the problem expressed in the title,
integral representation of the deflection of the loaded plate bord#nce rigid supports would produce constant deflections of the

with respect to the plate center is supported border arcs with respect to the plate center whereas the
. cosinusoidal term is undesired. The two const&ysandC, are
_ “ _ not generic, since they depend upon the angular widtlof2the
w(e) Zf,a K(10=ohF(o)rode (2:3) supports and upon the selectEdw). The expressions for con-

stantsC,; andC, can be derived fron2.3) and (2.7,
where the presence of number 2 in Eg.3) derives from the

observation that a unity periphery load is connected to a central C.— _de( 9)  Cy=wW(8)]p——C (2.8)
force of intensity 2(see Fig. 2 The origin of angled coincides 2 de* |, * 0=0 =2 ’
with the center of one of the loaded arcs, while anglés an ) )
integration device whose origin coincides with thatéof wherew(#6) in (2.8) depends on the selectde(w). Since the

transverse forc® and is bilaterally sustained along two antipodalitle problem, it is explored in the following section whether con-
edge arcs of angular width @ the supported arcs exhibit a con-StantC; vanishes.

stant deflection with respect to the plate center, since the support

is assumed to be rigid in comparison to the plate flexibility. The

integral equation describing the title problem may thus be of3- Evaluation of the Reaction Force Distribution and of

tained by equalling to a constant the integral expres&®® of  the Plate Deflections for the Solution of the Integral Eq.
the plate deflection. It is also noted that, since the plate suppor 5

arcs must remain flat after deflection, the derivatives with respect’

to 0 of the plate deflectiow along the supported arc must vanish. As suggested by the form of the analytical solution to the inte-
In particular, a remarkably simple integral equation is achieved lgyal Eq. (2.5 for vanishing Volterra termLing [6], p. 309, a

annulling the sum of the first and third derivatives SOlUtEO? to the complete E@2.5) is expressed in the forifGlad-
well [7])
dw(9)+d3w(0)_ ta oK+a3K E(o)do0 _
de de® ) \ae " 96 (0)do=0. coswu _s!nw)
(2.4) Flo)= —>ne] 31
(@) VSt a—sirf (31)

By exploiting the symmetry of the reaction forée and the
condition(2.5), after lengthy passages the integral Ejj4) takes with u(x) even. This is a standard procedure when solving singu-
the particularly compact Prandtl-type form lar integral equations. Setting
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x= sina’
where in the following it is assumed thak@<m/2, Eq. (2.5
becomes

= Sina (3-2)

1-tZsifa 1l (*1 1 u(x) (1+v) [t u(x)
Sina Ef_lm(t—x)d” 2 ) e
=f(t) (3.3)

where

(1+v) ) ) T
f(t)= g P asm(tsma)+§ (3.4)
whereas conditiori2.6) assumes the new form
+1u(x) P
f_lmdx=2—ro. (3.5)

It may be proved that the Prandtl integral E§.3 coupled

(3.3 has been numerically solved with the collocation method, by
adopting theN positive zeroes of the Chebyshev polynomials of
the second kind of degred\2 It can be shown that this colloca-
tion method is convergent in the considered weightédpace for
variableF(w), which in turn means that thith derivative, with
k=0,1,2, of the approximant ofi( ) is uniformly convergent to
the corresponding derivative of( 8). This justifies the numerical
approach employed to determine constadisandC,, hence to
prove the nonexistence results. The omitted details may be found
in Monegato and StrozZB]. The choiceN=4 in (3.8) appears to

be sufficient to guarantee three to four significant digits.

The numerically determined reaction forEéw) remains rea-
sonably constant along the supported arcs, apart from the infinite
peaks at the support extremities. Unfortunately, fer2a<s the
plate supported edge arcs, when deflected by the above reaction
force distribution, do not remain flat, as it would be requested by
the title problem. In fact, constaft, of Eq. (2.7), when computed
from (2.8) by employing the unique reaction foréq ) which
solves Eq.(2.5, does not vanish, but it remains positive and de-
creasing witha for 0<2a<<7. Consequentlyw () does not stay
constant for 8=6<q, but it decreases with. Figure 3 displays the
value of coefficientC, normalized overK=Pt§/(27TD), versus
2al, for v=0.3. Fora—0, coefficientC,—» as loge, (Strozzi
et al. [9]), whereasC, vanishes only for @=7. As a conse-
quence, for &22a<mw the plate supported edge arcs, when de-
flected by the reaction force, exhibit a cosinusoidal profile.

The above numerical results prove that reaction force distribu-
tions do exist which cause a cosinusoidal deflection of the plate
loaded edge arcs. Conversely, such results demonstrate that no
reaction force profile=(w) of form (3.1 and belonging to the
weightedL? space defined by3.7) exists which keeps the plate
supported edge arcs flat, for any angular width of the supports
comprised in the interval<©2a<. Forms of the unknown func-
tion F(w) belonging to the weightetl® space defined by3.7)
include, for example, functions possessing an endpoint singularity
bounded byC(1—x?)#, where>—3/4, and where variable is
defined by(3.2). Consequently, reaction forces with the above
singularities do not constitute a solution to the title problem. For
instance, a reaction force distributiéi{w) exhibiting the classi-
cal square root singularities at the contact extremitigs—1/2
>—23/4, encountered when a rigid rectangular punch indents a
deformable half-space; Gladw¢l], cannot solve this plate prob-
lem. Similarly, algebraic/logarithmic singularities of type, say,

1-x?)~2|og(1-x? are unacceptable. This negative result is
corroborated by an analogous conclusion reached by Grigolyuk

with condition (3.5 possesses a unique solution for the wholgnd Tolkachew[3], p. 382 with regard to an infinite plate resting

physical range o, with u(x) respecting the condition

(3.6)

[
X<eo,
—1\/1—x2

that is, withF () belonging to the weightet? space defined by

the inequality

era\/sinz a—Ssirt o|F(w)?do<w. (3.7)

This proof is omitted for brevity, where details may be found i

Monegato and Stroz#8].

The reaction forcd=(w) expressed by3.1) which solves the
integral Eq.(3.3) is numerically determined to the requested a
curacy. It is then shown that this reaction force produces a n
vanishing constan€, for all angular widths 2 of the supports

0<2a<ar. Approximatingu(x) by uy(x)

b N
Un(X)= st Zl Cai T2i(X)

ry

(3.8)

C

on a line support. On the other side, functidh&w) possessing
stronger singularities3<—3/4, do not verify condition3.7) and,
consequently, are not considered in this study. It cannot therefore
be excluded that a solution to the title problem might exist which
exhibits such endpoint singularities. It cannot equally be excluded
a priori that a solutiorF (w) of the equatiorw=C derived from

(2.3 exists, which is of a more general form than the one consid-
ered here. For instance, Grigolyuk and Tolkachgg1, p. 381
propose that the distributed reaction be formed by a distributed
force superposed to a distributed couple. Notice also that for the

Lase 2= , for which the plate is axisymmetrically supported, a

solution to the title problem does exist, which consists of a con-
stant reaction force. The same conclusions hold for any axisym-
metric, non-self-equilibrated loading, for instance for a plate sim-

%\y supported along two antipodal arcs and deflected by a uniform
' transverse pressure.

It is finally shown that the reaction force can neither be consti-
tuted by a distributed force and by two concentrated loads at the
support extremities. In other words, the reaction force cannot be
of the formFy(w) + C[ §(w— @) + §(w+ a) ], whereF is of type

where T, are the classical Chebyshev polynomials of the firg8.1), & is the Dirac delta function, and where the presence of
kind, all integrations in3.3) may be exactly expressed in terms ofonstantC aims at annulling consta@, in (2.7). Indeed, such a
the Chebyshev polynomials of the second kind. Consequently, Egnction cannot satisfy Eq2.5) since
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ta S(w*a) 1 of the damage, the severity of the damage, and the effect of bound-
J tan o— o) w= an o= a)’ —a<f#<+a (3.9) ary conditions. The results show that the method is suitable for
Ca - detecting localized damage and relatively robust in terms of sen-
while all other terms in(2.5) give rise to smoother functions atsor position, damage height, and degree of damage.
w==*ao. [DOI: 10.1115/1.1379038

4  Conclusions

A purely flexural mechanical analysis has been carried out forja |ntroduction
thin, solid, circular plate, deflected by a central transverse concen-_l_h let-based h tructural health itori
trated force,_and bilaterally supported aI_ong two antipodal p_eriph- gavr‘%vie de‘?asc‘iiona%g?feenorreiéﬂ(t:l uraursﬁg d bmomn;ﬁrln?e_
ery arcs. This problem has been described in terms of a smgui’zs}d h 9 1-3) Thi ; ; ythp i t'y ftr):
integral equation of the Prandtl type, which admits a uniqu%earc er{;e.g.[ )). This note summarizes the application ot the

. 2 . ' . . avelet technique to detect localized damage based on simulated
weightedL < solution. It has been shown that this solution does nQ

) . . namic response data from finite element analysis. Based on
fulfill the _requested boundary constraints. Itis t_herefore conclud? alized perturbations detected using Gabor wavelet coefficients
that the title problem does not admit any reaction force among ’

. 2 . . e damage position can be estimated without any prior knowl-
weightedL* functions here considered. It cannot, however, b@dge. The results for the effect of sensor position, damage height,

excluded that a solution to the title problem exists, which poss, severity of damage are discussed. The difference in results for
sesses stronger endpoint singularities than those examined in

study, or is of a more general form than the one here considerﬁI g(le);tsetépported and fixed ended boundary conditions are also
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Table 1 Computed damage position based on data from vari-
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Singapore, Singapore 117576 Estimated
Position of Position of Percentage
position of
load (m) sensor {m) error (%)
damage (m)

The applicability of Gabor wavelet transform of time history data
in detecting a thin damage in beam is examined. For the case 0.0 Ar0.2 0.505 1.0
where the damage position is completely unknown, the use of two

load positions is suggested. Cases considered are the position of 00 B:08 0.501 02

the sensors relative to the damage and load positions, the height 0.0 C 01 0.484 32
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Table 2 Detecting damage using signals from two loads (four possible damage positions  )*

Fa Fs
I du J di \L d2 4 dr |
Case | | k3 i a Lt A B A A I S AP 2 S o
| L B | 41 |
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LFA LFB
1 ta <0 —_ —_
td
Fa Fa
£ d, +2d,
2 ta >0 —_—
Vhl
td
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L d,
3 tg > T, No
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*Note: I is damage location
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Fig. 2 Distribution of Gabor wavelet coefficients at scale 13 for different de-
gree of damage for sensor position A

X time history captured by the sensor. Since higher frequency waves
xdzf(tAlﬂAz) (2) are more suitable for damage detection using wave propagation
Al analysis, the distributions of the wavelet coefficients at high scales
wheret,; andt,, denote the time the direct and reflected wavare considered. The appropriate scale is chosen which has ad-
reaches sensdk. For the case where the damage is of significamtguate peaks to signify the arrival times of waves at the sensor
width, two additional times based on wave reflections are needgdsition. Based on experience, the first three to five peaks give
in order to estimate the width of the damage zone. Similar equaasonable results, corresponding to scale 13 for the examples
tions can be written to locate the damage location if the sensomisesented in this note.
at either positiorB or C. A fixed ended beam with a crack was numerically studied
To obtain the arrival times of a wave at an appropriate fravhere the response data was computed from finite element analy-
quency, Gabor wavelet$3]) are used to transform the responsais. The pertinent data of the beam are: wiBts 20 mm, thick-
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nessH=10mm, lengthL=2 m, modulusE=206 GPa, and ac- A Novel Technique in the Solution of
tual damage location is 0.5 m. The results are shown in Table

indicating that the approach yields good results for the three seéixisymmetric Large Deflection

sor positions. . :
In practice, often no prior knowledge of the approximate posl-A\naIySIS of a Circular Plate

tion of the damage relative to the sensor and loading positions—s
available. In this case, either additional time values caused by the

wave reflections from the damage are used or a secondHgasl T S. Ramachandra and D. Roy

considered. The former is not preferred due to complications arlRepartment of Civil Engineering, Indian Institute of
ing from multiple wave reflections. Usirfgg and based on simple Technology, Kharagpur 721 302, India

wave propagation, it is shown in Table 2 that the location of the

damage can be estimated, where the average velocity of wave

propagation can be computed as

In the present paper a new linearization technique referred to as
di+d, d, t_he locally transverfsal Iineari_zati_on (LTL) is used for large deflec-
= (3) tion analyses of axisymmetric circular plates. The LTL procedure,
where solution manifolds of linearized equations are made to in-
) o . . tersect transversally those of the nonlinear ordinary differential
Once the relative position of the damage is known, the distanggyations, reduces the given set of nonlinear ordinary differential
between the damage and load can be computed as described &giations to a set of nonlinear algebraic equations in terms of a
lier. The same procedure can be easily extended to locate & cretized set of unknown response vectors.
loading position if the latter is not known. [DOI: 10.1115/1.1379039
Numerical simulations were performed to study the effect of
damage height on detectability. Results for/H=0.4, 0.6, 0.8,
and 1.0 indicate that the damage locations can be estimated to )
within a one percent error. 1 Introduction
The damage above was simulated by setting the Young's moduy¢ is ysually not possible to replace the nonlinear governing
lus of the damage zone to one-tenth that of the undamaged be@ffferential equations in terms of some linearized equations even
The wavelet coefficients at scale 13 are presented in Fig. 2 Wiher small step sizes, as the tangent spaces of the nonlinear dif-
the damage zone having Young's moduli of one-tenth, one-fiftharential equations are space dependent. A way out of this problem
half, and eight-tenths of the undamaged beam. As the severityj@fhowever, found in the proposed locally transversal linearization
damage increases, the lower peak in the wavelet coefficient cuyy§|) method, wherein solution manifolds of the linearized equa-
corresponding to the damage becomes more significant. The cqyns are made to intersect transversally those of the given non-
puted positions for the four cases are not significantly differentaear equations at a set of pre-selected points along the indepen-
ranging from 0.505 m for the one-tenth case to 0.500 m for thfsnt axis where the solution vectors need to be determined. The
eight-tenth case. ) method, thus, attempts to satisfy exactly the governing nonlinear
The detectability is compared between simply suppot®8  ordinary differential equations at these pre-selected points. The
and fixed endedFF) boundary conditions. The SS case yields gT| -hased solution may not follow the actual path in between any
4.2 percent error in the computed damage position comparedyy such successive points of intersections. The method finally
0.2 percent for the FF case. The probable reason is due to fB@yces the given non-linear ordinary differential equations to a
vertical boundaries at the end where, for the FF case, it is Ugbllection of coupled sets of nonlinear algebraic equations in
formly constrained. For the SS case, only the lower comer j§rms of the unknown solution vectors at each of the chosen
constrained and the other nodes are free. Hence, the refle¢igthts. In present study, a boundary value problem is treated as a
wave in the latter case is a composite wave but computationaiynstrained initial value problem, where one of the boundaries
the averaged wave speed is used. (say, the left boundajpyof the domain is treated as the initial point
to start integrating the ordinary differential equations; however, all
the state variables at the left boundary are not known a priori. To
start with, only a few of these conditions are known at the left
boundary while the rest are specified at the right boundary of the
3 Concluding Remarks domain. In this study, the unknown initial conditions at the left
S . boundary are treated as unknown variables to be determined such
The applicability of the wavelet transform to damage detectiqfa the resulting solution satisfies prescribed boundary conditions
has been examined where the Gabor wavelet is used to analyg&q right houndary. The method is adequately described else-
the time history data caused by thin damage. For the case Whgé’;‘ere([l]) and, hence, not reproduced here. The large deflection

h1— A T (B
t1 t1

the damage position is completely unknown, the use of two 10aGisymmetric analysis of circular plate is carried out using the

positions is suggested. The results of the sensitivity of the methg posed LTL technique. Comparisons are made with the power

in terms of the height of damage, severity of the damage aQjes solutions and other approximate solutions and in the pro-

boundary conditions indicate the promise of this approach.  cegs, high numerical accuracy of the proposed method is readily
brought out.
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d?u 1du u (1—-v) (dw\2 dw d?w algebraic equations simultaneously in order to obtain the equilib-

az + a2 T (W) ~dar ar? (1) rium path of the structure. In the present study, a globally conver-
gent nonlinear equation solver based on line searches and back-

tracking along the Newton directiorisee[3],) has been adopted

dw 1dw 1dw_12dwidu u 1/dw|’ for solving the system of the nonlinear algebraic equations.
dr rdr® r2dr h?dr|dr r 2\dr
1 r . .
+ —f qrdr @) 3 Results and Discussion
Dr Jo The aforementioned method has been used to obtain the elastic,

large deflection response of the uniformly loaded circular plate
with various boundary conditions. In the present case, to avoid
singularity at the center, a central small hdllee ratio of hole to

plate radii is 0.00bis considered. While the deflections are evalu-
u(r=0)=0 ated at the edge of the hole, the moments and stress resultants are
calculated slightly inside the plate, i.e., at a distance of “@:01

where, *h” is the thickness,v the Poisson’s ratioD the flexural
rigidity, “ " intensity of lateral load, and &” the radius of the
plate. The associated boundary conditions are

and from the center. Good convergence of deflection at the free edge
has been observed and they are not presented here for the sake of
o (r=0=0 brevity. The results are presented taking 40 divisions along the
radius.
u(r=a)=0; w(r=a)=0; Way [4] has obtained exact results for the large deflection
and analysis of a clamped circular plate. The present results are com-
pared with that of Way’s results in Figs. 1 and 2.
dw
E(r:a)zo for clamped 3)
. . —LTL
u(r=a)=0; w(r=a)=0;
(r=a) (r=a) oy
and 124
M,(r=a)=0 for simply supported
1.04
To solve the above boundary value problem, the following LTI
equations over théh subdomairD; and with initial conditions
WD, dulPrdr=u/00Y ) WD, dw Prdr=w/ 00, s %%
d2wl " Prdr2=w/0 Y} are employedsuperscripts stand for the i
segment number and subscripts denote the node niimber 2 064
Q
du T o4
a9z "B @ 34
dswi) 0.2
P T<Rl ®) 1
dr 0.0 T T T T T T T T T T T T
A complete solution of Eq44) and(5) may be easily written and 0 2 4 6 8 10 12
the arbitrary constants of integration are evaluated via initial col Load, ga*/Eh*

ditions:
. Ry S LT Fig. 1 Load-deflection curve for the uniformly loaded circular
Ui—1=Ui—gy U= Uigs Wi =Wiogy Wi =W g clgmped plate Y

and

"

Wi =W (6) —LTL

After obtaining the expressions fo(r) andw(r), the analytical * Way

expressions fon’ (r),u”(r), w'(r),w”(r), andw”(r) in terms of
the unknown solution parametef and y; may be obtained.
Substitutingu’ (r), u”(r), w’(r), w”(r), andw”(r) in the origi- 54
nal Egs.(1) and (2) atr=r;, two coupled nonlinear algebraic 1
equations ing; and y; are obtained. In a similar way one may «~_ 41
continue obtaining nonlinear equations for the conditionally con & Bending stress
stant parameterg; andy; (j=1,2,...n) at all the intersection
points. This results in “A” nonlinear algebraic equations inn2
+3 unknown parameterg; and y; (j=1,2,...n) and u'(r
=0), w(r=0), w’(r=0). It may, however, be observed that for
the present problem, w, andw’ or M, are known at the right 4
end, i.e.r=a. Thus, in the conditional initial value problem ap-
proach, the unknowns’ (r=0), w(r=0), w”(r=0) are to be so

determined as to result in a constrained dynamical trajector oo o2 04  os o8 10 12  1a
which satisfies the boundary conditionsrata. This constraint Deflection, w /h

condition leads to the required additional equations via the ana- ¢

lytical expression available fou™(r), w™(r) and w(r). Fig. 2 Load-membrane /bending stresses curves for the uni-
Since equations are coupled, one has to solve all the nonlinéamly loaded circular clamped plate

Bending stress

stress, a

Membrane stress

atgeenter

Membrane stress
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Table 1 Large deflection of uniformly loaded simply sup- alizations of the thermoelasticity theory allowing for the second

portgd cir_culgr plate (»=0.25): comparison of locally transver- sound is the model of Green and Linds@l) ([1]). It contains
sal linearization (LTL) and exact results two characteristic times: ong;, in the momentum equation and
: the other, directly responsible for the second sound ttgein the
Results obt d f LTL Federhof d E ! f
esulls obfained from ederholer and =9ger energy equation. The model assddee alsd?2]) that
oMa?/Eh? oPa?/Eh? oMa?/Eh? o a?/Eh? t<t 1
ga¥Eh* w./h (Edge  (Edge w./h (Edge  (Edge <ty @

307 0884 0478 0715 0882 0469 0714 Dueto lack of measurements, theoretical knowledge, @ndt,
718 1247 0984 1052 1245 0967  1.051 Iis highly desirable. So far conditioi) was exploited, e.g., i8],
25.66 1.966 2.595 1.780  1.965 2.544 1.780 to estimate a lower limit fot; on the basis of an independent
102.64 3.132  6.948 3.046 3136  6.798 3.042 theoretical estimate fdy,. Inequality(1) also has qualitative con-
20528 3.952  11.083 3.954 3.953 10.943 3.933 sequence: It is prohibitive for spontaneous thermomechanical in-
307.92 4522 14.625 4.593 4526  14.432 4.557 ™ s - . . S
stability. This implies that in an isolated body which is not sub-
. . . . L jected to external forces and heat sources, small deformations and
g—is the intensity of uniformly distributed lateral load .
w.—central deflection small temperature gradlents_ cannot grow.
E—Young's modulus;z"—radial membrane stress”—tangential bending stress Here we formulate a modified version of the GL model, where
the condition(1) does not appear. First, consider an entropy pro-
duction inequality([4,5]) which underlies the GL model.

Itis observed that the results compare well. The LTL results are /5y, (;¢) ) (a{/, ﬁdb) ) ( ap b ) )
~Po

compared with the exact solutions given by Federhofer and Eggerpg T + ey 0—po|l —+n—|0 TN + Uy O,n
[5] for the case of simply supported plate in Table 1. Even for 96 d0 A A
very high nonlinearity, the deflections obtained from the present

method compare well with the Federhofer and Egger. However, in - +|s,,— Epo( WY ﬂ — lpoﬂ( a4 + ﬁ) as
the case of stresses and moments the comparison is not that good. 27"\ denp  degal 2 dea  J€ga
This may be due to the reason that the exact method employ Qaldd b I 1/ 96 b
insufficient terms in the representation of the displacements. How- — ~2|~~ O, p+ —— O,ga+ — 0,4+ _(_ +
ever, in the LTL method such problems do not arise as the non- ¢ |90 90,8 2\deyn  denm
linear equations are exactly satisfied. ¢ a6\

Xe + —poat|—| [=0, 2
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the function¢ is connected tay, specific internal energy, and

f ot : : specific entropyy, via /=& — n¢. To satisfy(2) Green and Lind-
On CharaCtenStIC Times I_n_ say chose to set to zero several terms2p leading to six equa-
Generalized Thermoelasticity tions, one of which is
ap  ad)\ ..
) pol —+7n—|6=0, 3)
D. V. Strunin 9 d0
Department of Mathematics and Computing, so that a sum of only a few terms () is non-negative:
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Consider small temperature deviatioAsand displacements;

) ) . (ui=x;—X). Then, assuming the functiofito have the formy

The model of Green and Lindsay is a popular generalization ‘_J—Il//(ﬁ,ﬁ,ﬁ,i,eij), wheree;; = (1/2) (u; + Uy;), and the functions
the theory of thermoelasticity incorporating second sound. Wlth{B have the formg=¢(6,8) and going over from the variables

the model the second sound is intimately linked to a presenceyof 1, the variables;, one can expand these functions into the
two characteristic times,;tand t,, constrained by an inequality Taylor series:

t,=<t,;. We present a modification of the theory where no con-
straints on the times arise[DOI: 10.1115/1.1386696

The classical Fourier law of heat conduction leads to instanta-
neous propagation of heat to infinitely remote areas of space. This 1 1
paradox is traditionally surmounted by describing the heat signal +aieid+biei o+ 5 akisf, 0,5t S Kirs€ikers, ()
as a wave, called second sound. One of the most popular gener-

1 1.
polp:faafbafEdazfeaef§f¢92+ai09,i+aijkeije,k

. 1.
_ _ o d="0+ 0+ ab+ BOO+ = y62.
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M2k = The above consideration reveals a possibility of new formula-
(da=h)6°+k;; 0,60,=0, ) tion of the GL model. Which of the two mode(the original or
where by definitionh= af—by/a? Equation(6) must hold for modified is preferable is not clear so far. We view this question as
any physically possible temperature field. Therefore, taking intppart of wider issue concerning the selection of the most realistic
account that the thermal conductivity tensky is positive- model of generalized thermoelasticity. Alongside with the GL
definite,(6) is met provided thalt/d= o which is just the relation model there are other thermoelasticity models allowing for the

(1) wheret,=h/d, t;=a. second sound, for instance the known Lord-Schulii&8) model
Let us consider different way of satisfying the entropy inequalf9]). Unlike the GL theory it contains only one characteristic
ity by exchanging the terms betwe€3) and (4) as follows: time, namely the thermal relaxation time which is analogois to
o o) . The _a_ma_lysis([S]) _showed that in the_ LS model spontaneous in-
Po(— + 7/_) 9=0, (7) stability is impossible so that small disturbances decay. But decay
d0 a0 rates in the LS and the GL models are different in the general
b db\ . Qulad o\’ case. It seems that in the final analysis the selgction of thg most
—Po(—-+ 7]_.) - =2 = ,a+ _) =0. (8) adequate model has to be based on how well it agrees with ex-
90 30 ¢ |90 IXn periments. Thethypothetical spontaneous instability could be a
The rest of the five equations are identical to those in the originMPting target for experimental detection. If detected for some
GL model ([1]). Using (7) and (8) we transform(2) to material the_ effect would provide a convincing argument in favpr
of our version of the GL model. If not, other experimental evi-
(b—aa)b-ﬁ-(e—da—aﬁ)éﬁ-ﬁ-(f—ea—ay}b@ dences will be necessary to support particular model.
. . a,
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Consider a thermomechanical system in the form of a closed
wire (ring). Supposing a curvature small and neglecting its affects
on dynamics write the governing momentum and energy equa-

tions for longitudinal thermomechanical disturbances in nondj :

mensional form _ C.Iosed-Form Solutions for the Stress
U= U= BOx= B110,=0, a2 Fields Induced by Blunt Wedge-
720+ 0= XUy~ 0,,=0, Shaped Indenters in Elastic Half-Planes

whereB and y are positive thermomechanical constamtsand r,
are the nondimensionalized times,andt,, respectively. As the 1
model is linear, it will suffice to study a behavior of harmonicC' E. Truman . . . . )
disturbancesu=U exp(t+ikx) and 6=0 exp(t+ikx), where Department of Mechanical Engineering, University of

the wave numbeik=27/L (L is the perimeter of the wijeis a Bristol, Queen’s Building, University Walk,

real number and the frequeney, is a complex-valued function of Bristol BS8 1TR, UK. Mem. ASME

k. Although straightforward our linear analysis is different from

the recent analysi§6]) performed in the spirit of 7] wherek was A. Sackfield

assumed to be a complex function of realEquationg12) result ) . ) . .

in the characteristic equation Department of Mathematics, Nottingham Trent University,

0t w3+ (1o + 14 Byr) Kl + (14 By)Klw +KA=0.  (13) Burton Street, Nottingham, NG1 4BU, UK
Analysis([8]) of (13) shows that ifS=(7,— 71) (1+ xB)<1 then
Rew<Q0, that is the disturbances decay and the rever&sifl
then Rew>0, so that the disturbances grow. Within the origin
GL theory r,<7;, S<0<1, and hence the growth of displace-
ment and temperature is impossible. In the modified model t

losed-form expressions are given for the Muskhelishvili poten-
ials created by wedge-shaped indenters contacting elastic half-
lanes. The potentials are given for normal and sliding contact of

e . oth similar and dissimilar materials. Surface values of the ten-
value ofSin principle is not restrictedalthough due to smallness ". 0 )
of 7, and 7, it may still be less than 1 even wheg>r;). From SION Ty are also presented[DOI: 10.1115/1.1386697
theoretical point of view the possibility of instability presents con——
siderable interest. Remark that balance equation for total energy,T® Whom correspondence should be addressed.
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P ki+1l kot1
A= T
Apq Apo
with x;=3—4v; in plane strain and;=(3—v;)/(1+ ;) in plane
stress and; and u; representing Poisson’s ratio of bodgnd the

modulus of rigidity of bodyi, respectively. By substituting E¢3)
into Eq. (2) it is found

d)(z)=lp70(1—if )sin’l(%). (4)

This can be compared with the result obtained in an earlier
study ([1]), namely

0

(7 1)(n,1)/2

Fig. 1 The geometry of the problem. A wedge loaded by a nor- _ i S o 52— q\n
mal force, P, and a tangential force, Q. When the materials are ©(2)=ipo(L-if )nzzl,z n (z=vz'=1)
similar ¢=0.

where the notatiom=1, 2 implies that summation is over odd
values ofn only. It is straightforward to sum this series and show
agreement with Eq(4). A more general result for the Muskhel-
ishvili potential for stick-slip of similar materials has been pre-

This paper concludes a series of work which examined the statented by Jger [8]. The removal of the summation sign greatly
of stress caused by wedge-shaped indenters penetrating eldatiteases the usefulness of the solution. As describ@@l, it is
half-planes ([1-3]). Several reasons motivated the study. Fafiow routine to determine the stress components from Egs.
power-law indenters which have profiles of the forty solutions L
are well known for\ =0, 2 and higher even values. The solution 3-1-1 Surface Values of StressThe tension in the surface,
for =1, to be discussed in this note, is currently only available ifixx IS @ useful quantity to know as it is one parameter which
specialized conditions which will be mentioned. As well as beingoverns the growth of surface cracks, caused for instance by fret-
a fundamental geometry there has been a need for the stress fillgs From Eq.(4) and Egs(1) this is determined as

1 Introduction

created by such indenters for use in fretting fatigue tésth. 1+ V1-x2
Traditionally Hertzian indenters\(=2) have been used, but in ad= po[fqrsgr‘(x)+|n —)} [x|<1
order to validate crack initiation theories and wear models other ||

geometries have also been used in order to compare results. The _ 1,
simplest such geometry is the wedge, depicted in Fig. 1, where the =fpolm—2tan "(Vx*~1)}, x>1 ®)
load is shown applied with a small offsefrom the center of the where it can be seen that the stress field is logarithmically
indenter. The case=0 corresponds to the case when the indentgingular.
and substrate are made of similar materials or the coefficient of
friction is zero.

This basic configuration can also be used to model asperities3.2 Dissimilar Materials
([5]) or study the motion of styli over disks, although it should be

- : ) . 3.2.1 Normal Contact. In the section above, covering the
pointed out the analysis uses first-order theory so only appllesctgse of similar materials, the normal and sliding cases were not
wedge angles of greater than about 160 deg.

treated separately. This was because, for similar materials, under
normal indentation only, no shear tractions arise. However, for

2 Formulation dissimilar materials, even under purely normal indentation, shear
The basic equations, linking the stresseswith the Muskhe- tractions arise beca_use_particles in each su_rface underg_o differi_ng
lishvili potential ® are ([6,7]) amounts of tangential displacement depending upon their material
_ constants. In this section the stress fields generated in the full slip

Oxxt oy =2[®(2) + P(2)] regime will be found, i.e., it will be assumed that the shear trac-

_ — tion is everywhere limited by Coulomb’s law but is an odd func-
Oyy— Oyt 2i0,,=2[(z=2)®'(2) - P(2)—DP(z)] (1) tion of position, i.e.,q(x)=—fp(x) for x<0 andq(x)="Fp(x)
for x>0. It should be remarked that Speri®& showed that there

where ; - . e e
will always be a finite stick zone, unless the coefficient of friction
1 1 p(x)—iq(x) is identically zero, but the solution to be obtained is a good ap-
P(z)= omi 71—)(,2 dx. ) proximation for low values of friction. For the case of normal

indentation only, the shear traction is assumed not to influence the
p(x) is the contact pressure distributiar(x) is the shear traction normal traction, an often-used approximation associated with
distribution which, for the sliding casg(x) = fp(x), with f being Goodmar{10]. In other words the problem is assumed uncoupled
the coefficient of friction and an overbar representing compler the normal and shear tractions. This assumption is relaxed for
conjugation. In what follows, all variables are considered normahe sliding case treated later.

ized with respect to the contact half-widsh With these assumptions an extra term to be combined with Eg.
(4) evaluated withf =0 is found to be
3 Interior Stress Field f 1))\2
o (z)=ﬁ ( [ ’1(—)) (6)
3.1 Similar Materials. For the wedge indenter, shown in d 27 z

Fig. 1, it can be shown that for similar materidtsr, more spe-
cifically, if any shear tractions do not influence the normal pre
sure distributioin ([7])

— —1
p(x)=pocosh *(1/x[), |x|<1 4 surface values of stressBy combining Eqgs.(4) and (6) the
wherepy=26/7A, andA is the composite compliance, given byMuskhelishvili potential is found to be

which can be compared with the result shown[2], which is
Bmitted here for brevity, and the simplicity of the new result is
obvious.
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Cipo| 1)7if (17 1-c 1L 1 1
PEH=Z s (z 2 P “ 78148, 2, 2179
The surface value of the tension is then 1+c 1, 1, 1,1
o Pof 141 aaee2-s 2, 29 O
Uxx:; ln |X|
2 1+ J1—x2]\2 where;F, is a generalized Hypergeometric function. This is valid
+2fl——|In . Ix<1 provided that
4 ||
fpo 12
_ MO -1 = 1
o7 {sm x|’ x=1 ®) larg 1— w)<m| and arg{l—;)‘<fr,

which, again, is logarithmically singular.

3.2.2 Sliding Contact. The final problem consists of deter-which corresponds to everywhere except on the #ireé inside
mining the Muskhelishvili potential for full sliding contact of two the contact zone.
dissimilar materials. The problem is considered fully coupled in
the sense that the pressure distribution influences the shear trac-
tion andvice versaThe pressure distribution arising for this con-

figuration is given by(3]) 4 Conclusion
(2 sirA(wB)(C\' B c _ _Results_have bee_n prese_nted in close(_j form_for the Muskhelish-
— _po—(_) zFl(l,l—B,Z—B; _), vili potential associated with the two-dimensional contact of a
m " 1-B X X wedge and an elastic half-plane. This enables rapid and exact
X< C determination of all the surface and interior stress values. Closed-
p(x)= ir? B form solutions were also obtained for the surface values of tension
_ E p0—3| (78) (5) zpl( 1B.1+B: 5) ogx for a couple of important cases. This quantity is thought to be
B C " "C)’ responsible for propelling surface cracks, caused either by mono-
X>c tonic or cyclic loading.
. The pertinent equations we(4), (7), and(9) and their simplic-

wherec is the offset of the indenter from the line of action of thety over existing solutiongwhere they existedvas demonstrated.
normal load, associated with the elastic mismatch and shownwhere previous solutions existed the simplicity of the new results

Fig. 1 and is obvious.
B) L
tan7B)= —
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